Article

The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis

Neurobiology, Campus Gasthuisberg O&N2, PB1022, Herestraat 49, B-3000 Leuven, Belgium.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 11/2006; 1762(11-12):1068-82. DOI: 10.1016/j.bbadis.2006.05.002
Source: PubMed

ABSTRACT Unfortunately and despite all efforts, amyotrophic lateral sclerosis (ALS) remains an incurable neurodegenerative disorder characterized by the progressive and selective death of motor neurons. The cause of this process is mostly unknown, but evidence is available that excitotoxicity plays an important role. In this review, we will give an overview of the arguments in favor of the involvement of excitotoxicity in ALS. The most important one is that the only drug proven to slow the disease process in humans, riluzole, has anti-excitotoxic properties. Moreover, consumption of excitotoxins can give rise to selective motor neuron death, indicating that motor neurons are extremely sensitive to excessive stimulation of glutamate receptors. We will summarize the intrinsic properties of motor neurons that could render these cells particularly sensitive to excitotoxicity. Most of these characteristics relate to the way motor neurons handle Ca(2+), as they combine two exceptional characteristics: a low Ca(2+)-buffering capacity and a high number of Ca(2+)-permeable AMPA receptors. These properties most likely are essential to perform their normal function, but under pathological conditions they could become responsible for the selective death of motor neurons. In order to achieve this worst-case scenario, additional factors/mechanisms could be required. In 1 to 2% of the ALS patients, mutations in the SOD1 gene could shift the balance from normal motor neuron excitation to excitotoxicity by decreasing glutamate uptake in the surrounding astrocytes and/or by interfering with mitochondrial function. We will discuss point by point these different pathogenic mechanisms that could give rise to classical and/or slow excitotoxicity leading to selective motor neuron death.

Download full-text

Full-text

Available from: Ludo Van Den Bosch, Jun 25, 2015
0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that motor neurons are highly vulnerable to glutamate induced excitotoxicity. The selective vulnerability of these neurons has been attributed to AMPA receptor mediated excessive rise in cytosolic calcium and consequent mitochondrial Ca(2+) loading. Earlier we have reported that in motor neurons a generic rise in [Ca(2+)]i does not always lead to mitochondrial Ca(2+) loading and membrane depolarization but it occurs upon AMPA receptor activation. The mechanism of such specific mitochondrial involvement upon AMPA receptor activation is not known. The present study examines the mitochondrial Ca(2+) regulation and oxidative stress in spinal cord neurons upon AMPA subtype of glutamate receptor activation. Stimulating the spinal neurons with AMPA exhibited a sharp rise in [Ca(2+)]m in both motor and other spinal neurons that was sustained up to the end of recording time of 30min. The rise in [Ca(2+)]m was substantially higher in motor neurons than in other spinal neurons which could be due to the differential mitochondrial homeostasis in two types of neurons. To examine this possibility, we measured AMPA induced [Ca(2+)]m loading in presence of mitochondrial inhibitors. In both cell types the AMPA induced [Ca(2+)]m loading was blocked by mitochondrial calcium uniporter blocker ruthenium red. Moreover, in motor neurons it was also inhibited substantially by CGP37157 and cyclosporine-A, the blockers of Na(+)/Ca(2+) exchanger and mitochondrial permeability transition pore (MPTP) respectively, whereas no effect of these agents was observed in other spinal neurons. Thus in motor neurons the Ca(2+) sequestration by mitochondria occurs through mitochondrial calcium uniporter as well as due to reversal of Na(+)/Ca(2+) exchanger, in contrast the latter pathway does not contribute in other spinal neurons. The ROS formation was inhibited by nitric oxide synthase (NOS) inhibitor L-NAME in both types of neurons, however the mitochondrial complex-I inhibitor rotenone suppressed the ROS formation only in motor neurons. It appears that activation of cytoplasmic nNOS leads to ROS formation in both types of spinal neurons but mitochondria is the major source of ROS in motor neurons. Spinal neurons exhibited a significant time dependent fall in glutathione (GSH) level. The GSH level in motor neurons did not recover even at 24h after AMPA exposure, whereas the other spinal neurons exhibited a tendency to maintain the GSH after a certain level suggesting that the oxidative stress is arrested in other spinal neurons but it continues to increase in motor neurons. Thus our results demonstrate that upon AMPA receptor stimulation the motor neurons employ some additional pathways for regulation of mitochondrial calcium and oxidative stress as compared to other spinal neurons. It is suggested that such differential signaling mechanisms in motor neurons could be crucial for their selective vulnerability to excitotoxicity. Copyright © 2015. Published by Elsevier B.V.
    Brain research 05/2015; 1616. DOI:10.1016/j.brainres.2015.04.042
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease causing progressive paralysis of the patient followed by death on average 3-5 years after diagnosis. Disease pathology is multi-factorial including the process of excitotoxicity that induces cell death by cytosolic Ca(2+) overload. In this study, we increased the neuronal expression of an endoplasmic reticulum (ER) Ca(2+) release channel, inositol 1,4,5-trisphosphate receptor 2 (IP(3)R2), to assess whether increased cytosolic Ca(2+) originating from the ER is detrimental for neurons. Overexpression of IP(3)R2 in N2a cells using a Thy1.2-IP(3)R2 construct increases cytosolic Ca(2+) concentrations evoked by bradykinin. In addition, mice generated from this construct have increased expression of IP(3)R2 in the spinal cord and brain. This overexpression of IP(3)R2 does not affect symptom onset, but decreases disease duration and shortens the lifespan of the ALS mice significantly. These data suggest that ER Ca(2+) released by IP(3) receptors may be detrimental in ALS and that motor neurons are vulnerable to impaired Ca(2+) metabolism.
    Biochemical and Biophysical Research Communications 11/2012; DOI:10.1016/j.bbrc.2012.10.094
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disorder characterized mainly by a progressive loss of motor neurons. Glutamate excitotoxicity is likely the main cause of neuronal death, and Riluzole interferes with glutamate-mediated transmission. Thus, in such independent pathway, these effects may be partly due to inactivation of voltage-dependent sodium channels. Here we predict the structural model of the interaction and report the possible binding sites of Riluzole on Nav1.6 channel. The docked complexes were subjected to minimization and we further investigated the key interacting residues, binding free energies, pairing bridge determination, folding pattern, hydrogen bounding formation, hydrophobic contacts and flexibilities. Our results demonstrate that Riluzole interacts with the Nav1.6 channel, more specifically in the key residues TYR 1787, LEU 1843 and GLN 1799, suggesting possible cellular implications driven by these amino acids on Riluzole-Nav1.6 interaction, which may serve as an important output for a more specific and experimental drug design therapy against ALS.
    Journal of Theoretical Biology 09/2012; 315C:53-63. DOI:10.1016/j.jtbi.2012.09.004