Article

Deregulation of eIF4E: 4E-BP1 in differentiated human papillomavirus-containing cells leads to high levels of expression of the E7 oncoprotein.

Center for Molecular Biology of Oral Diseases, College of Dentistry, M/C 860, University of Illinois at Chicago, 801 South Paulina Street, 60612, USA.
Journal of Virology (Impact Factor: 5.08). 08/2006; 80(14):7079-88. DOI: 10.1128/JVI.02380-05
Source: PubMed

ABSTRACT Infections with high-risk human papillomaviruses (HPVs) are linked to more than 95% of cervical cancers. HPVs replicate exclusively in differentiated cells and the function of the HPV E7 oncoprotein is essential for viral replication. In this study, we investigated the mechanism that regulates E7 expression in differentiated cells. The level of E7 protein was strongly induced in HPV-containing Caski, HOK-16B, and BaP-T cells during growth in methylcellulose-containing medium, a condition that induces differentiation. Enhanced expression of E7 was observed between 4 and 8 h of culturing in methylcellulose and was maintained for up to 24 h. The increase was not due to altered stability of the E7 protein or an increase in the steady-state level of the E7 mRNA. Instead, the translation of the E7 mRNA was enhanced during differentiation. More than 70 to 80% of the E7 mRNA was found in the polysome fractions in the differentiated cells. Consistent with this observation, higher levels of the phosphorylated translator inhibitor 4E-BP1 were observed in differentiated HPV-containing cells but not in differentiated non-HPV tumor cells or primary keratinocytes. The mTOR kinase inhibitor rapamycin blocked phosphorylation of 4E-BP1 and significantly decreased the level of E7 protein in Caski cells, suggesting that phosphorylation of 4E-BP1 is linked to E7 expression. Prevailing models for the molecular mechanisms underlying E7 expression have focused largely on transcriptional regulation. The results presented in this study demonstrate a significant role of the cellular translation machinery to maintain a high level of E7 protein in differentiated cells.

0 Bookmarks
 · 
32 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggesting a potential anti-CMV effect of mTORis is of great interest to the transplant community. However, the concept of an immunosuppressant with antiviral properties is not new, with many accounts of the antiviral properties of several agents over the years. Despite these reports, to date, there has been little effort to collate the evidence into a fuller picture. This manuscript was developed to gather the evidence of antiviral activity of the agents that comprise a typical immunosuppressive regimen against viruses that commonly reactivate following transplant (HHV1 and 2, VZV, EBV, CMV and HHV6, 7, and 8, HCV, HBV, BKV, HIV, HPV, and parvovirus). Appropriate immunosuppressive regimens posttransplant that avoid acute rejection while reducing risk of viral reactivation are also reviewed. The existing literature was disparate in nature, although indicating a possible stimulatory effect of tacrolimus on BKV, potentiation of viral reactivation by steroids, and a potential advantage of mammalian target of rapamycin (mTOR) inhibition in several viral infections, including BKV, HPV, and several herpesviruses. Copyright © 2012 John Wiley & Sons, Ltd.
    Reviews in Medical Virology 11/2012; · 7.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer is the most common genital malignancy and the high-risk human papillomaviruses (HPV type 16, 18 and 31, and so on) are major agents for its cause. A key switch for the onset of cervical cancers by HPVs is the cellular degradation of the tumor-suppressor p53 that is mediated by the HPV-generated E6 protein. E6 forms a complex with the E3 ubiquitin-ligase E6-associated protein (E6AP) leading to p53 degradation. The components that control E6 expression and the mechanisms for regulation of the expression in host cells remain undefined. Here we show that the nuclear noncanonical poly(A) polymerase (PAP) speckle targeted PIPKIα regulated PAP (Star-PAP) controls E6 mRNA polyadenylation and expression and modulates wild-type p53 levels as well as cell cycle profile in high-risk HPV-positive cells. In the absence of Star-PAP, treatment of cells with the chemotherapeutic drug VP-16 dramatically reduced E6 and increased p53 levels. This diminished both cell proliferation and anchorage-independent growth required for cancer progression, indicating a synergism between VP-16 treatment and the loss of Star-PAP. This identifies Star-PAP as a potential drug target for the treatment of HPV-positive cancer cells. These data provide a mechanistic basis for increasing the sensitivity and efficiency of chemotherapy in the treatment of cancers that have low levels of wild-type p53.Oncogene advance online publication, 18 February 2013; doi:10.1038/onc.2013.14.
    Oncogene 02/2013; · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer is the third most common cancer worldwide, and the development of new diagnosis, prognostic, and treatment strategies is a major interest for public health. Cisplatin, in combination with external beam irradiation for locally advanced disease, or as monotherapy for recurrent/metastatic disease, has been the cornerstone of treatment for more than two decades. Other investigated cytotoxic therapies include paclitaxel, ifosfamide and topotecan, as single agents or in combination, revealing unsatisfactory results. In recent years, much effort has been made towards evaluating new drugs and developing innovative therapies to treat cervical cancer. Among the most investigated molecular targets are epidermal growth factor receptor and vascular endothelial growth factor (VEGF) signaling pathways, both playing a critical role in cervical cancer development. Studies with bevacizumab or VEGF receptor tyrosine kinase have given encouraging results in terms of clinical efficacy, without adding significant toxicity. A great number of other molecular agents targeting critical pathways in cervical malignant transformation are being evaluated in preclinical and clinical trials, reporting preliminary promising data. In the current review, we discuss novel therapeutic strategies which are being investigated for the treatment of advanced cervical cancer.
    Journal of Cancer. 01/2014; 5(2):86-97.

Full-text (2 Sources)

View
4 Downloads
Available from
May 23, 2014