Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators.

Clinical Division, Department of Herbal Medicine, Tai Sophia Institute, 7750 Montpelier Road, Laurel, MD 20723, USA. .
Alternative medicine review: a journal of clinical therapeutic (Impact Factor: 4.86). 07/2006; 11(2):128-50.
Source: PubMed

ABSTRACT Modulation of cytokine secretion may offer novel approaches in the treatment of a variety of diseases. One strategy in the modulation of cytokine expression may be through the use of herbal medicines. A class of herbal medicines, known as immunomodulators, alters the activity of immune function through the dynamic regulation of informational molecules such as cytokines. This may offer an explanation of the effects of herbs on the immune system and other tissues. For this informal review, the authors surveyed the primary literature on medicinal plants and their effects on cytokine expression, taking special care to analyze research that utilized the multi-component extracts equivalent to or similar to what are used in traditional medicine, clinical phytotherapy, or in the marketplace.
MEDLINE, EBSCO, and BIOSIS were used to identify research on botanical medicines, in whole or standardized form, that act on cytokine activity through different models, i.e., in vivo (human and animal), ex vivo, or in vitro.
Many medicinal plant extracts had effects on at least one cytokine. The most frequently studied cytokines were IL-1, IL-6, TNF, and IFN. Acalypha wilkesiana, Acanthopanax gracilistylus, Allium sativum, Ananus comosus, Cissampelos sympodialis, Coriolus versicolor, Curcuma longa, Echinacea purpurea, Grifola frondosa, Harpagophytum procumbens, Panax ginseng, Polygala tenuifolia, Poria cocos, Silybum marianum, Smilax glabra, Tinospora cordifolia, Uncaria tomentosa, and Withania somnifera demonstrate modulation of multiple cytokines.
The in vitro and in vivo research demonstrates that the reviewed botanical medicines modulate the secretion of multiple cytokines. The reported therapeutic success of these plants by traditional cultures and modern clinicians may be partially due to their effects on cytokines. Phytotherapy offers a potential therapeutic modality for the treatment of many differing conditions involving cytokines. Given the activity demonstrated by many of the reviewed herbal medicines and the increasing awareness of the broad-spectrum effects of cytokines on autoimmune conditions and chronic degenerative processes, further study of phytotherapy for cytokine-related diseases and syndromes is warranted.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Complementary therapies are widely used among cancer patients. Kuan-Sin-Yin (KSY) decoction, a popular qi-promoting herbal medicine, was constituted with several herbs known to exhibit immunomodulating or anticancer activity. After combining these herbs as a compound formula, it is necessary to reassess the immunomodulation effects, the effects on tumor growth, and possible toxicity of KSY. The anti-cancer effects of KSY in vivo were determined by measuring the tumor volumes, anticancer-associated cytokines (IFN-gamma, TNF-alpha, IL-2, and IL-12), accumulation of tumor infiltrating leukocytes (TILs), proliferation and apoptosis-related molecular markers (Ki-67, p53, p21, activated caspase 3, and cleaved PARP), and an in situ TUNEL assay. The body weight and serum chemistry of treated mice were also assessed. In vitro, the effects of KSY were evaluated using MTT assay, BrdU incorporation assay and cell growth curve. In vivo, KSY suppressed bladder or lung cancer growth but did not promote the production of cytokines nor increase the accumulation of TILs. The expression of p53 and p21 in KSY-treated mice were increased. The numbers of apoptotic tumor cells and the expression of apoptosis marker proteins (Caspase 3 and cleaved PARP) were not significantly elevated after KSY treatment. In vitro, the viability and proliferation of tumor cells, but not normal cells, were suppressed by KSY treatment. No significant toxicity was found in KSY-treated mice. KSY suppressed the tumor growth in vivo and in vitro, which resulted from its cytostatic effects on cancer cells, rather than the induction of anti-cancer immunity. Under these experimental conditions, no apparent toxicity was observed.
    BMC Complementary and Alternative Medicine 12/2014; 14(1):488. · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rhizomes of Dioscorea membranacea Pierre, also called Hua-Khao-Yen by Thai name, are used as ingredients in many Thai traditional medicines for the alternative or complementary treatment of cancer and AIDs. Preliminary in vitro studies have indicated that D. membranacea extracts exhibited high cytotoxic activity with several cancer cell lines, but the underlining mechanisms are far from clear. The aims of this study were to investigate the effects of ethanolic and aqueous crude extracts from D. membranacea Pierre, and pure compound from D. membranacea Pierre, Dioscorealide B, on natural killer cells activity and on lymphocyte proliferation.
    BMC Complementary and Alternative Medicine 10/2014; 14(1):403. · 1.88 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014