Modulation of cytokine expression by traditional medicines: A review of herbal immunomodulators

Clinical Division, Department of Herbal Medicine, Tai Sophia Institute, 7750 Montpelier Road, Laurel, MD 20723, USA. .
Alternative medicine review: a journal of clinical therapeutic (Impact Factor: 3.83). 07/2006; 11(2):128-50.
Source: PubMed


Modulation of cytokine secretion may offer novel approaches in the treatment of a variety of diseases. One strategy in the modulation of cytokine expression may be through the use of herbal medicines. A class of herbal medicines, known as immunomodulators, alters the activity of immune function through the dynamic regulation of informational molecules such as cytokines. This may offer an explanation of the effects of herbs on the immune system and other tissues. For this informal review, the authors surveyed the primary literature on medicinal plants and their effects on cytokine expression, taking special care to analyze research that utilized the multi-component extracts equivalent to or similar to what are used in traditional medicine, clinical phytotherapy, or in the marketplace.
MEDLINE, EBSCO, and BIOSIS were used to identify research on botanical medicines, in whole or standardized form, that act on cytokine activity through different models, i.e., in vivo (human and animal), ex vivo, or in vitro.
Many medicinal plant extracts had effects on at least one cytokine. The most frequently studied cytokines were IL-1, IL-6, TNF, and IFN. Acalypha wilkesiana, Acanthopanax gracilistylus, Allium sativum, Ananus comosus, Cissampelos sympodialis, Coriolus versicolor, Curcuma longa, Echinacea purpurea, Grifola frondosa, Harpagophytum procumbens, Panax ginseng, Polygala tenuifolia, Poria cocos, Silybum marianum, Smilax glabra, Tinospora cordifolia, Uncaria tomentosa, and Withania somnifera demonstrate modulation of multiple cytokines.
The in vitro and in vivo research demonstrates that the reviewed botanical medicines modulate the secretion of multiple cytokines. The reported therapeutic success of these plants by traditional cultures and modern clinicians may be partially due to their effects on cytokines. Phytotherapy offers a potential therapeutic modality for the treatment of many differing conditions involving cytokines. Given the activity demonstrated by many of the reviewed herbal medicines and the increasing awareness of the broad-spectrum effects of cytokines on autoimmune conditions and chronic degenerative processes, further study of phytotherapy for cytokine-related diseases and syndromes is warranted.

Download full-text


Available from: Kevin Spelman,
  • Source
    • "Current pharmacological strategies include cytokine antagonist, agonist, inhibition, and stimulation models. However, in light of the adverse events experienced with cytokine-targeted therapy, it could be useful to consider the use of phytotherapy in the modulation of cytokine expression [47]. Recently, Quintero-Fabián et al. examined the effects of alliin in lipopolysaccharide-(LPS-) stimulated 3T3-L1 adipocytes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects.
    Journal of Immunology Research 05/2015; 2015:1-13. DOI:10.1155/2015/401630 · 2.93 Impact Factor
  • Source
    • "Modulation of cytokine secretion may offer novel approaches in prevention and treatment of a variety of diseases. Certain herbal medicine extracts have been shown to have immunomodulatory activity, modifying the immune function through the dynamic regulation of informational molecules such as cytokines (Spelman et al., 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purposes of this study were to explore TLR2 and TLR4 participation and MyD88 and NF-κB activation in bovine mammary glands (BMG) treated with Panax ginseng (PG) at involution and verify the effect of PG in the cytokine expression. Quarters were infused at the end of lactation with PG solution (3 mg/ml), placebo or kept as uninoculated controls. Cows were slaughtered at 7 d after cessation of milking and mammary tissue samples were taken. A significant increase of TLR2, TLR4, MyD88, NF-κB, IL-1β, IL-6 and TGF-β1 mRNA expression was observed in PG-treated quarters. Immunostaining of TLR2 and TLR4 was significantly higher in PG mammary tissues. The percentages of immunopositive cells for NF-κB-p65 were significantly higher in PG-treated quarters. The BMG responded to PG extract components possibly by TLR2 and TLR4 signaling pathway. These results provide an insight into potential mechanisms by which PG stimulates innate immunity during BMG involution. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Research in Veterinary Science 03/2015; 100. DOI:10.1016/j.rvsc.2015.03.025 · 1.41 Impact Factor
  • Source
    • "In addition, the inhibition of YPFS was evaluated by determining neuraminidase activity of influenza virus B; however, the inhibition was not effective (Fig. 3B). Immune-related illnesses have a notable history of being treated with Chinese herbal mixture that is able to alter the activities of immune system via dynamic regulation of messenger molecules, i.e. cytokines, adhesion molecules, nitric oxide, hormones, neurotransmitters and other peptides (Spelman et al., 2006). Herbal medicine is well known in ameliorating pathophysiological processes, e.g. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Yu Ping Feng San (YPFS), a Chinese herbal decoction comprised of Astragali Radix (Huangqi), Atractylodis Macrocephalae Rhizoma (Baizhu) and Saposhnikoviae Radix (Fangfeng), has been used clinically for colds and flus; however, the action mechanism of which is not known. Previously, we had demonstrated that YPFS could modulate inflammatory response and phagocytosis in exerting anti-viral and anti-bacterial effects. Here, we further evaluated the bioactivities of YPFS in gene expression regulated by interferon (IFN) signaling and neuraminidase activity of influenza virus A. Application of YPFS onto cultured murine macrophages, the expressions of mRNAs encoding ribonuclease L (RNaseL), myxovirus (influenza virus) resistance 2 (Mx2), protein kinase R (PKR) and IFN-stimulated gene 15 (ISG15) were induced from 2 to 30 folds in dose-dependent manners. In parallel, the transcriptional activity of IFN-stimulated response element (ISRE), an up stream regulator of the above anti-viral proteins, was also triggered by YPFS treatment. Conversely, YPFS was found to suppress the neuraminidase activity of influenza virus A in cultured epithelial cells, thereby preventing the viral release and spreading. Taken together, YPFS exerted anti-bacterial and anti-viral effects in innate immunity. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
    Phytotherapy Research 01/2015; 29(5). DOI:10.1002/ptr.5290 · 2.66 Impact Factor
Show more