The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila.

Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E 5100, Salt Lake City, Utah 84112, USA.
Cell Metabolism (Impact Factor: 16.75). 08/2006; 4(1):37-48. DOI: 10.1016/j.cmet.2006.06.006
Source: PubMed

ABSTRACT Exposure to xenobiotics such as plant toxins, pollutants, or prescription drugs triggers a defense response, inducing genes that encode key detoxification enzymes. Although xenobiotic responses have been studied in vertebrates, little effort has been made to exploit a simple genetic system for characterizing the molecular basis of this coordinated transcriptional response. We show here that approximately 1000 transcripts are significantly affected by phenobarbital treatment in Drosophila. We also demonstrate that the Drosophila ortholog of the human SXR and CAR xenobiotic receptors, DHR96, plays a role in this response. A DHR96 null mutant displays increased sensitivity to the sedative effects of phenobarbital and the pesticide DDT as well as defects in the expression of many phenobarbital-regulated genes. Metabolic and stress-response genes are also controlled by DHR96, implicating its role in coordinating multiple response pathways. This work establishes a new model system for defining the genetic control of xenobiotic stress responses.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We used 197 Drosophila melanogaster Genetic Reference Panel (DGRP) lines to perform a genome-wide association analysis for virgin female lifespan, using ~2M common single nucleotide polymorphisms (SNPs). We found considerable genetic variation in lifespan in the DGRP, with a broad-sense heritability of 0.413. There was little power to detect signals at a genome-wide level in single-SNP and gene-based analyses. Polygenic score analysis revealed that a small proportion of the variation in lifespan (~4.7%) was explicable in terms of additive effects of common SNPs (≥2% minor allele frequency). However, several of the top associated genes are involved in the processes previously shown to impact ageing (eg, carbohydrate-related metabolism, regulation of cell death, proteolysis). Other top-ranked genes are of unknown function and provide promising candidates for experimental examination. Genes in the target of rapamycin pathway (TOR; Chrb, slif, mipp2, dredd, RpS9, dm) contributed to the significant enrichment of this pathway among the top-ranked 100 genes (p = 4.79×10(-06)). Gene Ontology analysis suggested that genes involved in carbohydrate metabolism are important for lifespan; including the InterPro term DUF227, which has been previously associated with lifespan determination. This analysis suggests that our understanding of the genetic basis of natural variation in lifespan from induced mutations is incomplete. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America.
    The Journals of Gerontology Series A Biological Sciences and Medical Sciences 04/2015; DOI:10.1093/gerona/glv047 · 4.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive overexpression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4’-dichlorodiphenyltrichloroethane (DDT) resistant strains the glucocorticoid receptor-like (GR-like) potential transcription factor binding motifs (TFBMs) have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR) in D. melanogaster is an estrogen-related receptor (ERR) gene, which has two predicted alternative splice isoforms (ERRa and ERRb). Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G) codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G). Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.
    PLoS ONE 03/2015; 10(3). DOI:10.1371/journal.pone.0118779 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Flies look very different from humans, but both are descended from a common ancestor that existed over 600 million years ago. Some differences between animal species are due to them having different genes: stretches of DNA that contain the instructions to make proteins and other molecules. However, often differences are caused by the same or similar genes being switched on and off at different times and in different tissues in each species. The instructions that control when and where a gene is expressed are written in the sequence of DNA bases located in the regulatory region of the gene. These instructions are written in a language that is often called the ‘gene regulatory code’. This code is read and interpreted by proteins called transcription factors that bind to specific sequences of DNA (or ‘DNA words’) and increase or decrease gene expression. Changes in gene expression between species could therefore be due to changes in the transcription factors and/or changes in the instructions within the regulatory regions of specific genes. Gene regulatory regions are not well conserved between species. However, it is unclear if the instructions in these regions are written using the same gene regulatory code, and whether transcription factors found in different species recognize different DNA words. Nitta et al. have now used high-throughput methods to identify the DNA words recognized by 242 transcription factors from a fruit fly called Drosophila melanogaster. Nitta et al. then used new computational tools to find motifs, or collections of DNA words, that are recognized by each of the transcription factors. By comparing the motifs, they observed that, in spite of more than 600 million years of evolution, almost all known motifs found in humans and mice were recognized by fruit fly transcription factors. Nitta et al. noted that both fruit flies and humans have transcription factors that recognize a few unique motifs, and confer properties that are specific to each species. For example, some of the transcription factors that control the development of the fruit fly wing are not present in humans. Moreover, fruit flies lack both mucus-producing goblet cells and the ability to recognize a motif read by the transcription factor that controls the development of these cells in humans. The findings of Nitta et al. also indicate that transcription factors do not evolve to recognize subtly different DNA motifs, but instead appear constrained to recognize the same motifs. Thus, much like the genetic code that instructs how to build proteins, the gene regulatory code that determines how DNA sequences direct gene expression is also highly conserved in animals. The language used to guide the development of animals has, as such, remained very similar for millions of years. What makes animals different is differences in the content and length of the instructions that are written using this language into the regulatory regions of their genes. DOI:
    eLife Sciences 03/2015; 4. DOI:10.7554/eLife.04837 · 8.52 Impact Factor

Full-text (2 Sources)

Available from
May 26, 2014