Article

Insulin-like growth factors and their binding proteins in prostate cancer: Cause or consequence?

Department of Urology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
Urologic Oncology (Impact Factor: 3.36). 07/2006; 24(4):294-306. DOI: 10.1016/j.urolonc.2005.12.004
Source: PubMed

ABSTRACT Insulin-like growth factors (IGFs) promote growth and survival of many types of tumor cells. Epidemiologic studies have implicated carcinogenesis with high levels of IGFs in circulation or in tissues. The levels of IGF binding proteins (IGFBPs) have been associated with reduced risk for prostate and other cancers. Experimental studies have implicated high levels of IGF-I directly and IGFBP-3 inversely in prostate cancer growth, survival, and progression. However, recent evidence suggests a much weaker association of IGF-I with prostate cancer development and a stronger antagonistic association of IGFBP-3 with prostate cancer progression. Considering the clonal heterogeneity and unpredictable progression pattern of prostate cancer, the role of any single growth factor or its regulator (IGFBP) as a single determining factor is limited. This review is a critical appraisal of the role of IGFs, IGFBP, and IGF-I receptor (the IGF axis) in both experimental and clinical prostate cancer genesis and progression.

0 Followers
 · 
51 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of androgen independence, chemo-, and radioresistance are critical markers of prostate cancer progression and the predominant reasons for its high mortality. Understanding the resistance to therapy could aid the development of more effective treatments. The aim of this study is to investigate the effects of insulin-like growth factor-binding protein-2 (IGFBP-2) on prostate cancer cell proliferation and its effects on the response to docetaxel. DU145 and PC3 cells were treated with IGFBP-2, insulin-like growth factor I (IGF-I) alone or in combination with blockade of the IGF-I receptor or integrin receptors. Cells were also treated with IGFBP-2 short interfering ribonucleic acid with or without a PTEN (phosphatase and tensin homologue deleted on chromosome 10) inhibitor or docetaxel. Tritiated thymidine incorporation was used to measure cell proliferation and Trypan blue cell counting for cell death. Levels of IGFBP-2 mRNA were measured using RT-PCR. Abundance and phosphorylation of proteins were assessed using western immunoblotting. The IGFBP-2 promoted cell growth in both cell lines but with PC3 cells this was in an IGF-dependent manner, whereas with DU145 cells the effect was independent of IGF receptor activation. This IGF-independent effect of IGFBP-2 was mediated by interaction with β-1-containing integrins and a consequent increase in PTEN phosphorylation. We also determined that silencing IGFBP-2 in both cell lines increased the sensitivity of the cells to docetaxel. The IGFBP-2 has a key role in the growth of prostate cancer cells, and silencing IGFBP-2 expression reduced the resistance of these cells to docetaxel. Targeting IGFBP-2 may increase the efficacy of docetaxel.
    British Journal of Cancer 05/2011; 104(10):1587-93. DOI:10.1038/bjc.2011.127 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both IGF1 and androgens are major enhancers of prostate growth and are implicated in the development of prostate hyperplasia and cancer. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate. Mice with adult, liver-specific inactivation of IGF1 (LI-IGF1(-/-) mice) displayed an approximately 80% reduction in serum IGF1 levels associated with decreased prostate weight compared with control mice (anterior prostate lobe -19%, P<0.05; dorsolateral prostate (DLP) lobe -35%, P<0.01; ventral prostate (VP) lobe -47%, P<0.01). Reduced androgen receptor (Ar) mRNA and protein levels were observed in the VP lobe (-34% and -30% respectively, both P<0.05 versus control mice). Analysis of prostate morphology showed reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes that were proportional to the reductions in the weights of these lobes. Immunohistochemistry revealed reduced intracellular AR immunoreactivity in the VP and DLP lobes. The non-aromatizable androgen dihydrotestosterone increased VP weight to a lesser extent in orchidectomized (ORX) LI-IGF1(-/-) mice than in ORX controls (-40%, P<0.05 versus control mice). In conclusion, deficiency of liver-derived IGF1 reduces both the glandular and fibromuscular compartments of the prostate, decreases AR expression in prostate, and reduces the stimulatory effect of androgens on VP weight. These findings may explain, at least in part, the well-known clinical association between serum IGF1 levels and conditions with abnormal prostate growth.
    Journal of Endocrinology 10/2008; 199(3):489-97. DOI:10.1677/JOE-08-0406 · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that autocrine growth of human prostate cancer cell line DU145 is dependent on TGF (EGF)/EGFR loop. However, the participation of several other growth factors in proliferation of DU145 cells has been also proposed. We employed two selective tyrosine kinase inhibitors (tyrphostins): AG1024 (an IGFIR inhibitor) and SU1498 (a VEGFR2 inhibitor) for growth regulation of DU145 cells, cultured in chemically defined DMEM/F12 medium. Both the tested compounds inhibited autocrine growth of DU145 cells at similar concentration values (IC50 approximately 2.5 microM). The tyrphostins arrested cell growth of DU145 in G1 phase, similarly as inhibitors of EGFR. However, in contrast to selective inhibitors of EGFR, neither AG1024, nor SU1498 (at concentration < or =10 microM) decreased the viability of the investigated cells. These results strongly suggest that autocrine growth of DU145 cells is stimulated by, at least, three autocrine loops: TGFalpha(EGF)/EGFR, IGFII/IGFIr and VEGF/VEGFR2(VEGFR1). These data support the hypothesis of multi-loops growth regulation of metastatic prostate cancer cell lines.
    Folia Histochemica et Cytobiologica 06/2008; 46(2):185-91. DOI:10.2478/v10042-008-0028-1 · 1.00 Impact Factor