Inhibition of HIV Env binding to cellular receptors by monoclonal antibody 2G12 as probed by Fc-tagged gp120

Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego CA 92121, USA.
Retrovirology (Impact Factor: 4.77). 02/2006; 3:39. DOI: 10.1186/1742-4690-3-39
Source: PubMed

ABSTRACT During natural HIV infection, an array of host receptors are thought to influence virus attachment and the kinetics of infection. In this study, to probe the interactions of HIV envelope (Env) with various receptors, we assessed the inhibitory properties of various anti-Env monoclonal antibodies (mAbs) in binding assays. To assist in detecting Env in attachment assays, we generated Fc fusions of full-length wild-type gp120 and several variable loop-deleted gp120s. Through investigation of the inhibition of Env binding to cell lines expressing CD4, CCR5, DC-SIGN, syndecans or combinations thereof, we found that the broadly neutralizing mAb, 2G12, directed to a unique carbohydrate epitope of gp120, inhibited Env-CCR5 binding, partially inhibited Env-DC-SIGN binding, but had no effect on Env-syndecan association. Furthermore, 2G12 inhibited Env attachment to primary monocyte-derived dendritic cells, that expressed CD4 and CCR5 primary HIV receptors, as well as DC-SIGN, and suggested that the dual activities of 2G12 could be valuable in vivo for inhibiting initial virus dissemination and propagation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The application of Fc (fragment crystallizable)-based cytokines (the fusion of the constant region of IgG to a cytokine of interest) as biotherapeutic agents to modulate inflammatory and immune responses has become increasingly popular in recent years. This is because in their monomeric form, cytokines are relatively small molecules with short serum half-lives, which necessitates frequent administration and thus limits their clinical utility. To rectify the problem, attempts have been made to improve the stability of these agents in vivo. This has been achieved through diverse strategies such as modification with polyethylene glycol (PEGylation) or by ligating the cytokine to protein moieties such as the constant heavy chain of IgG, known as the Fc fragment. The construction of Fc chimeric proteins has been shown to improve pharmacokinetics. However, since there is an inverse relationship between the size of molecules and the rate at which they diffuse through mucus, Fc fusion constructs potentially have a lower rate of diffusion. Consequently, a compromise is reached whereby Fc constructs are engineered to incorporate ligated cytokines in a monomeric form (one molecule of cytokine fused to a single Fc dimer) rather than in a dimeric form (two molecules of cytokine fused to a single Fc dimer). A recent and novel approach to improve stability in serum is a procedure that involves sheathing cytokines in protective protein covers called latency peptides. The enclosed cytokine is protected from degradation and allowed to act where needed when the outer peptide cover is removed. For some applications, a reduced serum half-life is desirable; for example, where there is a need to reduce IgG levels in antibody-mediated diseases. To achieve this goal, a strategy called AbDeg, which involves enhanced Ig degradation, has been devised. This article provides an overview of the design and construction of Fc-based cytokines, in both dimeric and monomeric forms. Several examples of recent applications of such constructs, which include cytokine antagonism, cytokine traps, gene therapy and drug delivery, are also discussed. Other antibody-engineered constructs such as Fab (fragment, antigen binding) and single chain Fv (fragment, variable) fusions are also briefly covered.
    BioDrugs 01/2008; 22(1). DOI:10.2165/00063030-200822010-00002 · 2.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. Copyright © 2014 Elsevier Inc. All rights reserved.
    Virology 12/2014; 476C:240-248. DOI:10.1016/j.virol.2014.12.019 · 3.28 Impact Factor
  • Source

Full-text (3 Sources)

Available from
May 20, 2014