Anthocyanidins inhibit migration of glioblastoma cells: structure-activity relationship and involvement of the plasminolytic system.

Laboratoire de Médecine Moléculaire, Hôpital Ste-Justine-Université du Québec à Montréal, Montréal, Québec, Canada H3T 1C5.
Journal of Cellular Biochemistry (Impact Factor: 3.06). 02/2007; 100(1):100-11. DOI: 10.1002/jcb.21023
Source: PubMed

ABSTRACT Complete resection of malignant glioblastomas is usually impossible because of diffuse and widespread invasion of tumor cells, and complementary approaches need to be developed in order to improve the efficacy of current treatments. Consumption of fruits and berries has been associated with decreased risk of developing cancer and there is great interest in the use of molecules from dietary origin to improve anticancer therapies. In this work, we report that the aglycons of the most abundant anthocyanins in fruits, cyanidin (Cy), delphinidin (Dp), and petunidin (Pt), act as potent inhibitors of glioblastoma cell migration. Dp clearly exhibited the highest inhibitory potency, this effect being related to the ortho-dihydroxyphenyl structure on the B-ring and the presence of a free hydroxyl group at position 3. Dp decreases the expression of both urokinase-type plasminogen activator receptor (uPAR) and the low-density lipoprotein receptor-related protein (LRP), acting at the transcriptional levels. In addition, Dp upregulated urokinase-type plasminogen activator (uPA) and downregulated the plasminogen activator inhibitor-1 (PAI-1) but decreased, in a concentration-dependent manner, the uPA-dependent conversion of plasminogen to plasmin, indicating that the upregulation of uPA observed with these compounds was not associated with induction of the plasminolytic activity. Overall, these results demonstrate that Dp, Pt, and Cy affect plasminogen activation, thus leading to the inhibition of glioblastoma cell migration and therefore they may be helpful for the development of new strategies for cancer prevention and therapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Delphinidin, an anthocyanin present in red wine, has been reported to exert vasculoprotective properties on endothelial cells, including vasorelaxing and anti-apoptotic effects. Moreover, delphinidin treatment in a rat model of post-ischemic neovascularization has been described to exert anti-angiogenic property. Angiogenesis is an energetic process and VEGF-induced angiogenesis is associated with mitochondrial biogenesis. However, whether delphinidin induces changes in mitochondrial biogenesis has never been addressed. Effects of delphindin were investigated in human endothelial cells at a concentration described to be anti-angiogenic in vitro (10(-2)g/l). mRNA expression of mitochondrial biogenesis factors, mitochondrial respiration, DNA content and enzyme activities were assessed after 48hours of stimulation. Delphinidin increased mRNA expression of several mitochondrial biogenesis factors, including NRF1, ERRα, Tfam, Tfb2m and PolG but did not affect neither mitochondrial respiration, DNA content nor enzyme activities. In presence of delphinidin, VEGF failed to increase mitochondrial respiration, DNA content, complex IV activity and Akt activation in endothelial cells. These results suggest a possible association between inhibition of VEGF-induced mitochondrial biogenesis through Akt pathway by delphindin and its anti-angiogenic effect, providing a novel mechanism sustaining the beneficial effect of delphinidin against pathologies associated with excessive angiogenesis such as cancers.
    The international journal of biochemistry & cell biology 04/2014; · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Medulloblastoma, the most common malignant brain tumor in children, is a highly metastatic disease, with up to 30% of children having evidence of disseminated disease at presentation. Recently, the hepatocyte growth factor (HGF) and its receptor, the tyrosine kinase Met, have emerged as key components of human medulloblastoma growth and metastasis, suggesting that inhibition of this pathway may represent an attractive target for the prevention and treatment of this disease. Using immunoblotting procedures, we observed that the dietary-derived flavonols quercetin, kaempferol, and myricetin inhibited HGF/Met signaling in a medulloblastoma cell line (DAOY), preventing the formation of actin-rich membrane ruffles and resulting in the inhibition of Met-induced cell migration in Boyden chambers. Furthermore, quercetin and kaempferol also strongly diminished HGF-mediated Akt activation. Interestingly, the inhibitory effects of quercetin on the tyrosine kinase receptor Met [half-maximal inhibitory effect (IC(50)) of 12 micromol/L] or on the Met-induced activation of Akt (IC(50) of 2.5 micromol/L) occurred at concentrations achievable through dietary approaches. These results highlight quercetin, kaempferol, and myricetin as dietary-derived inhibitors of Met activity and suggest that this inhibitory effect may contribute to the chemopreventive properties of these molecules.
    Journal of Nutrition 03/2009; 139(4):646-52. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple lines of evidences suggest that oxidative stress induced by reactive oxygen species are closely related to multi-stage carcinogenesis. Polyphenols, a group of chemicals with more than one phenol unit or building block per molecule, have been recognized for possessing many health benefits including cancer-preventive effects mainly due to their antioxidant activity. However, polyphenols can directly bind with signaling molecules involved in carcinogenesis and regulate its activity. Moreover, it is noteworthy that the binding between the polyphenol and the target protein is determined by their structural relationship, which implies that different polyphenols have different target proteins, leading to divergent chemopreventive effects. Extracellular stimuli transmit signals into a cell by activating their target signaling cascades involved in carcinogenesis. As an example, Src family kinase, a family of proto-oncogenic tyrosine kinases activated by a variety of oxidative stress and proinflammatory agents, is known to regulate cell proliferation, differentiation, survival and angiogenesis. Src family kinase subsequently activates downstream signal cascades including mitogen-activated protein kinase, phosphoinositol-3-kinase, and nuclear factor-kappaB, thereby inducing cell proliferation and causing cancer. Recent studies demonstrate that polyphenols can directly target signaling cascades involved in inflammation and the development of cancer. Inhibition of the kinases by polyphenols contributes to the attenuation of carcinogenesis. Therefore, the development of polyphenols as direct inhibitors against target proteins is regarded as a rational approach for chemoprevention. This review describes and discusses recent results about the direct interactions of polyphenols and protein kinases in cancer chemoprevention.
    Pharmacology [?] Therapeutics 02/2011; 130(3):310-24. · 7.79 Impact Factor


1 Download
Available from