Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast.

Department of Hematology, Cliniques Universitaires St Luc, Catholic University of Louvain, Brussels, Belgium.
Leukemia (Impact Factor: 10.16). 10/2006; 20(9):1496-510. DOI: 10.1038/sj.leu.2404302
Source: PubMed

ABSTRACT For long, T-cell acute lymphoblastic leukemia (T-ALL) remained in the shadow of precursor B-ALL because it was more seldom, and showed a normal karyotype in more than 50% of cases. The last decennia, intense research has been carried out on different fronts. On one side, development of normal thymocyte and its regulation mechanisms have been studied in multiple mouse models and subsequently validated. On the other side, molecular cytogenetics (fluorescence in situ hybridization) and mutation analysis revealed cytogenetically cryptic aberrations in almost all cases of T-ALL. Also, expression microarray analysis disclosed gene expression signatures that recapitulate specific stages of thymocyte development. Investigations are still very much actual, fed by the discovery of new genetic aberrations. In this review, we present a summary of the current cytogenetic changes associated with T-ALL. The genes deregulated by translocations or mutations appear to encode proteins that are also implicated in T-cell development, which prompted us to review the 'normal' and 'leukemogenic' functions of these transcription regulators. To conclude, we show that the paradigm of multistep leukemogenesis is very much applicable to T-ALL and that the different genetic insults collaborate to maintain self-renewal capacity, and induce proliferation and differentiation arrest of T-lymphoblasts. They also open perspectives for targeted therapies.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatic mutations in cancer cell genes are classified according to their functional significance. Those that provide the malignant cells with significant advantage are collectively referred to as driver mutations and those that do not, are the passenger mutations. Accordingly, analytical criteria to distinguish driver mutations from passenger mutations have been recently suggested. Recent studies revealed mutations in interleukin-7 receptor-α (IL7R) gene in 10% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and in only a few cases of pediatric B-ALL. IL7R mutations are also frequently found in patients with lung cancer, but whereas in pediatric T-ALL IL7R mutations are “drivers” (consisting of gain-of-function mutations within a narrow 50-base pair interval at exon 6 that confer cytokine-independent cell growth and promote tumor transformation), in lung cancer, mutations are substitution mutations randomly distributed across the gene and are probably only “passenger” events. Because the treatment response of adult T-ALL is significantly poorer than that of childhood T-ALL and because exon 6 IL7R mutations play a role in the pathogenesis of childhood T-ALL, we sought to determine how the pattern of IL7R mutations varies between adult and childhood T-ALL. To that end, we sequenced the 50-base pair interval in exon 6 of the IL7R of DNA obtained from bone marrow samples of 35 randomly selected adult patients with T-ALL. Our analysis revealed that none of these 35 samples carried an IL7R mutation in exon 6. Whether differences in the genetic makeup of adult and childhood T-ALL explain the differential response to therapy remains to be determined.
    Cancer Medicine. 02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Development of novel therapies is critical for T-cell acute leukaemia (T-ALL). Here, we investigated the effect of inhibiting the MAPK/MEK/ERK pathway on T-ALL cell growth. Unexpectedly, MEK inhibitors (MEKi) enhanced growth of 70% of human T-ALL cell samples cultured on stromal cells independently of NOTCH activation and maintained their ability to propagate in vivo. Similar results were obtained when T-ALL cells were cultured with ERK1/2-knockdown stromal cells or with conditioned medium from MEKi-treated stromal cells. Microarray analysis identified interleukin 18 (IL-18) as transcriptionally up-regulated in MEKi-treated MS5 cells. Recombinant IL-18 promoted T-ALL growth in vitro, whereas the loss of function of IL-18 receptor in T-ALL blast cells decreased blast proliferation in vitro and in NSG mice. The NFKB pathway that is downstream to IL-18R was activated by IL-18 in blast cells. IL-18 circulating levels were increased in T-ALL-xenografted mice and also in T-ALL patients in comparison with controls. This study uncovers a novel role of the pro-inflammatory cytokine IL-18 and outlines the microenvironment involvement in human T-ALL development.
    EMBO Molecular Medicine 04/2014; · 7.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT In T-cell acute lymphoblastic leukemia (T-ALL) several members of the NKL homeobox genes are aberrantly expressed. Here, we have analyzed the activity of NKL homeobox gene MSX1 using pediatric T-ALL in silico data, detecting overexpression in 11% of patients. Quantification of MSX1 transcripts in a panel of 24 T-ALL cell lines demonstrated overexpression in two examples. Comparative expression profiling indicated inhibition of the BMP-signalling pathway which was shown to inhibit MSX1 transcription. In LOUCY we identified conspicuous expression of CHRDL1 encoding a BMP-inhibitor which mediated activation of MSX1. Promoter analyses demonstrated activation of CHRDL1 by oncogenic PITX1. Furthermore, knockdown and overexpression studies of hematopoietic transcription factors demonstrated that GATA2 and FOXC1 mediate activation and GATA3, LEF1, TAL1 and TOX repression of MSX1 transcription. Collectively, our findings suggest that MSX1 is physiologically restricted to lymphoid progenitors. The identification of deregulated BMP-signalling may provide novel therapeutic options for the treatment of T-ALL.
    Leukemia & lymphoma. 05/2014;

Full-text (2 Sources)

Available from
May 31, 2014