Article

A gamma-secretase-like intramembrane cleavage of TNFalpha by the GxGD aspartyl protease SPPL2b.

Adolf Butenandt Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig Maximilians University, 80336 Munich, Germany.
Nature Cell Biology (Impact Factor: 20.06). 09/2006; 8(8):894-6. DOI: 10.1038/ncb1450
Source: PubMed

ABSTRACT Gamma-secretase and signal peptide peptidase (SPP) are unusual GxGD aspartyl proteases, which mediate intramembrane proteolysis. In addition to SPP, a family of SPP-like proteins (SPPLs) of unknown function has been identified. We demonstrate that SPPL2b utilizes multiple intramembrane cleavages to liberate the intracellular domain of tumor necrosis factor alpha (TNFalpha) into the cytosol and the carboxy-terminal counterpart into the extracellular space. These findings suggest common principles for regulated intramembrane proteolysis by GxGD aspartyl proteases.

0 Bookmarks
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The successive events of shedding and regulated intramembrane proteolysis are known to comprise a fundamental biological process of type I and II membrane proteins (e.g. amyloid precursor protein, Notch receptor and pro-tumor necrosis factor-α). Some of the resulting fragments were shown to be involved in important intra- and extracellular signalling events. Although shedding of the human transferrin receptor-1 (TfR1) has been known for > 30 years and soluble TfR1 is an accepted diagnostic marker, the fate of the remaining N-terminal fragment (NTF) remains unknown. In the present study, we demonstrate for the first time that TfR1-NTF is subject to regulated intramembrane proteolysis and, using MALDI-TOF-TOF-MS, we have identified the cleavage site as being located C-terminal from Gly-84. We showed that the resulting C-terminal peptide is extracellularly released after regulated intramembrane proteolysis and it was detected as a monomer with an internal disulfide bridge. We further identified signal peptide peptidase-like 2a and mainly signal peptide peptidase-like 2b as being responsible for the intramembrane proteolysis of TfR1-NTF.
    FEBS Journal 04/2013; 280(7). · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N-glycosylation by triggering the proteolytic release of active site-containing ectodomains of glycosidases and glycosyltransferases such as N-acetylglucosaminyltransferase V, β-1,3 N-acetylglucosaminyltransferase 1 and β-1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post-translational process in eukaryotes.
    The EMBO Journal 10/2014; · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyloid β-protein (Aβ) plays a central role in the pathogenesis of Alzheimer's disease, the most common age-associated neurodegenerative disorder. Aβ is generated through intramembrane proteolysis of the β-carboxyl terminal fragment (βCTF) of β-amyloid precursor protein (APP) by γ-secretase. The initial cleavage by γ-secretase occurs in the membrane/cytoplasm boundary of the βCTF, liberating the APP intracellular domain (AICD). The remaining βCTFs, which are truncated at the C-terminus (longer Aβs), are then cropped sequentially in a stepwise manner, predominantly at three residue intervals, to generate Aβ. There are two major Aβ product lines which generate Aβ40 and Aβ42 with concomitant release of three and two tripeptides, respectively. Additionally, many alternative cleavages occur, releasing peptides with three to six residues. These modulate the Aβ product lines and define the species and quantity of Aβ generated. Here, we review our current understanding of the intramembrane cleavage of the βCTF by γ-secretase, which may contribute to the future goal of developing an efficient therapeutic strategy for Alzheimer's disease.
    Frontiers in Physiology 11/2014; 5:463.