Article

Neuroactive steroids and affective disorders.

Department of Psychiatry, Ludwig-Maximilian-University, Nussbaumstr. 7, 80336 Munich, Germany.
Pharmacology Biochemistry and Behavior (Impact Factor: 2.82). 09/2006; 84(4):656-66. DOI: 10.1016/j.pbb.2006.05.020
Source: PubMed

ABSTRACT Neuroactive steroids modulate neurotransmission through modulation of specific neurotransmitter receptors such as gamma-aminobutyric acid type A (GABA(A)) receptors. Preclinical studies suggested that neuroactive steroids may modulate anxiety and depression-related behaviour and may contribute to the therapeutical effects of antidepressant drugs. Attenuations of such neuroactive steroids have been observed during major depression and in several anxiety disorders, suggesting a pathophysiological role in such psychiatric conditions. In panic disorder patients a dysequilibrium of neuroactive steroid composition has been observed, which may represent a counterregulatory mechanism against the occurrence of spontaneous panic attacks. Furthermore, alterations of 3alpha-reduced pregnane steroids during major depression were corrected by successful treatment with antidepressant drugs. However in contrast, non-pharmacological antidepressant treatment strategies did not affect neuroactive steroid composition. In addition, changes in neuroactive steroid concentrations after mirtazapine therapy occurred independently from the clinical response, thereby suggesting that changes in neuroactive steroid concentrations more likely reflect direct pharmacological effects of antidepressants rather than clinical improvement in general. Nevertheless, the effects of antidepressant pharmacotherapy on the composition of neuroactive steroids may contribute to the alleviation of certain depressive symptoms, such as amelioration of anxiety, inner tension or sleep disturbances. Moreover, first studies investigating the therapeutical effects of dehydroepiandrosterone revealed promising results in the treatment of major depression. In conclusion, neuroactive steroids are important endogenous modulators of depression and anxiety and may provide a basis for development of novel therapeutic agents in the treatment of affective disorders.

0 Followers
 · 
108 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract OBJECTIVE: Neuroactive steroids are neuroactive molecules that has been shown to be associated with various psychiatric disorders. There are some inconclusive findings about the alteration in neuroactive steroid levels after the treatment of depression and ECT is still one of the most effective treatment choices for treatment resistant depression. Thus, we aimed to investigate the alterations of several neuroactive steroids in plasma after ECT in inpatients with treatment resistant depression.
    International Journal of Psychiatry in Clinical Practice 07/2014; 18(4):1-15. DOI:10.3109/13651501.2014.941880 · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Around 14.5 million peri- and postmenopausal women currently live in Germany. Moreover, approximately 450 000 women, each with a life expectancy of around 85 years, reach menopause every year in Germany. The challenge is therefore to find a therapy with few side effects which could improve the quality of life of women with menopausal symptoms. The aim of hormone therapy (HT) is to remedy hormone deficiencies using substances that offer the best trade-off between benefits and risks. This is where progesterone has a new and important role to play. Progesterone is one of the most important gestagens. Biologically effective progesterone formulations created with micronization techniques have been used in clinical practice since 1996. Nevertheless, up until 2003 preference was given to synthetic gestagens rather than progesterone. The increased breast cancer hazard ratio of 1.23 reported in the WHI study and of 2 given in the Million Women Study has been associated with the use of synthetic gestagens. In a comparison between synthetic gestagens and progesterone, the E3N Study showed that the transdermal administration of estrogen and progesterone did not lead to an increase in breast cancer rates (RR: 1.08). The administration of progesterone does not change the HDL/LDL cholesterol ratio. Because of its anti-mineralocorticoid effect, progesterone has no impact on carbohydrate metabolism, hemostasis, blood pressure, thrombogenicity and body weight. The administration of 200 mg/day progesterone over 12 days of a menstrual cycle or a daily administration of 100 mg combined with an estrogen are a safe and well-tolerated option to treat menopausal symptoms, with a better benefit risk profile compared to synthetic gestagens.
    Geburtshilfe und Frauenheilkunde 11/2014; 74(11):995-1002. DOI:10.1055/s-0034-1383297 · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During brain development the duration of miniature inhibitory post synaptic currents (mIPSCs) mediated by GABAA receptors (GABAARs) progressively reduces, to accommodate the temporal demands required for precise network activity. Conventionally, this synaptic plasticity results from GABAAR subunit reorganisation. In particular, in certain developing neurones synaptic α2-GABAARs are replaced by α1-GABAARs. However, in thalamocortical neurones of the mouse ventrobasal (VB) thalamus, the major alteration to mIPSC kinetics occurs on post-natal (P) day 10, some days prior to the GABAAR isoform change. Here, whole-cell voltage-clamp recordings from VB neurones of mouse thalamic slices revealed that early in postnatal development (> P8), the mIPSC duration is prolonged by local neurosteroids acting in a paracrine, or autocrine manner to enhance GABAAR function. However, by P10, this neurosteroid ‘tone’ rapidly dissipates, thereby producing brief mIPSCs. This plasticity results from a lack of steroid substrate as pre-treatment of mature thalamic slices (P20–24) with the GABAAR-inactive precursor 5α-dihydroprogesterone (5α-DHP), resulted in markedly prolonged mIPSCs and a greatly enhanced tonic conductance, mediated by synaptic and extrasynaptic GABAARs respectively. In summary, endogenous neurosteroids profoundly influence GABA-ergic neurotransmission in developing VB neurones and govern a transition from slow to fast phasic synaptic events. Furthermore, the retained capacity for steroidogenesis in the mature thalamus raises the prospect that certain physiological, or pathophysiological conditions, may trigger neurosteroid neosynthesis, thereby providing a local mechanism for fine-tuning neuronal excitability.This article is protected by copyright. All rights reserved
    The Journal of Physiology 10/2014; 593(1). DOI:10.1113/jphysiol.2014.280263 · 4.54 Impact Factor