Deletion of chromosome 1P36 is associated with periventricular nodular heterotopia

Harvard University, Cambridge, Massachusetts, United States
American Journal of Medical Genetics Part A (Impact Factor: 2.16). 08/2006; 140(15):1692-5. DOI: 10.1002/ajmg.a.31334
Source: PubMed
Download full-text


Available from: Volney L Sheen, Oct 06, 2015
21 Reads
  • Source
    • "Subcortical heterotopia are caused by defective cell migration from the fetal ventricular zone to the cortical plate, and can appear as scattered neurons, laminar bands, or PNH [52,56]. The first report of PNH in monosomy 1p36 appeared in 2006 [15]. In that case, multiple PNH were identified in the anterior portion of the left lateral ventricle. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Monosomy 1p36 is the most common subtelomeric chromosomal deletion linked to mental retardation and seizures. Neuroimaging studies suggest that monosomy 1p36 is associated with brain malformations including polymicrogyria and nodular heterotopia, but the histopathology of these lesions is unknown. Here we present postmortem neuropathological findings from a 10 year-old girl with monosomy 1p36, who died of respiratory complications. The findings included micrencephaly, periventricular nodular heterotopia in occipitotemporal lobes, cortical dysgenesis resembling polymicrogyria in dorsolateral frontal lobes, hippocampal malrotation, callosal hypoplasia, superiorly rotated cerebellum with small vermis, and lumbosacral hydromyelia. The abnormal cortex exhibited "festooned" (undulating) supragranular layers, but no significant fusion of the molecular layer. Deletion mapping demonstrated single copy loss of a contiguous 1p36 terminal region encompassing many important neurodevelopmental genes, among them four HES genes implicated in regulating neural stem cell differentiation, and TP73, a monoallelically expressed gene. Our results suggest that brain and spinal malformations in monosomy 1p36 may be more extensive than previously recognized, and may depend on the parental origin of deleted genes. More broadly, our results suggest that specific genetic disorders may cause distinct forms of cortical dysgenesis.
    08/2013; 1(1):45. DOI:10.1186/2051-5960-1-45
  • Source
    • "PH and William's syndrome have been identified and involved a deletion on 7q11.23 and include the region spanning the HIP1 and YWHAG genes [37, 39]. Deletion of chromosome 1p36 gives rise to PH and agenesis of the corpus callosum [40]. Genomic deletions leading to PH have also been reported to localize to 4p15, 5q14 [41, 42]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: During cortical development, proliferating neural progenitors exhibit polarized apical and basolateral membranes that are maintained by tightly controlled and membrane-specific vesicular trafficking pathways. Disruption of polarity through impaired delivery of proteins can alter cell fate decisions and consequent expansion of the progenitor pool, as well as impact the integrity of the neuroependymal lining. Loss of neuroependymal integrity disrupts radial glial scaffolding and alters initial neuronal migration from the ventricular zone. Vesicle trafficking is also required for maintenance of lipid and protein cycling within the leading and trailing edge of migratory neurons, as well as dendrites and synapses of mature neurons. Defects in this transport machinery disrupt neuronal identity, migration, and connectivity and give rise to a malformation of cortical development termed as periventricular heterotopia (PH). PH is characterized by a reduction in brain size, ectopic clusters of neurons localized along the lateral ventricle, and epilepsy and dyslexia. These anatomical anomalies correlate with developmental impairments in neural progenitor proliferation and specification, migration from loss of neuroependymal integrity and neuronal motility, and aberrant neuronal process extension. Genes causal for PH regulate vesicle-mediated endocytosis along an actin cytoskeletal network. This paper explores the role of these dynamic processes in cortical development and disease.
    10/2012; 2012(10):480129. DOI:10.6064/2012/480129
  • Source
    • "FULL-LENGTH ORIGINAL RESEARCH deletion (Neal et al., 2006; Saito et al., 2008), 7q11.23 deletion (Ferland et al., 2006) and 5pter duplication (Sheen et al., 2003b; Cardoso et al., 2009). There have been several large case series of patients with PNHs (Dubeau et al., 1995; Parrini et al., 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The phenotypic and etiologic spectrum in adults with nodular heterotopias (NHs) has been well characterized. However, there are no large pediatric case series. We, therefore, wanted to review the clinical features of NHs in our population. Hospital records of 31 patients with pathology or imaging-confirmed NHs were reviewed. Two-sided Fisher's exact t-test was used to assess associations between distribution of NHs and specific clinical features. NHs were distributed as follows: 8 (26%) unilateral focal subependymal, 3 (10%) unilateral diffuse subependymal, 5 (16%) bilateral focal subependymal, 12 (39%) bilateral diffuse subependymal, and 3 (10%) isolated subcortical. The phenotypic spectrum in our population differs from that described in adults. Significant morbidity and mortality are associated with presentation in childhood. Twenty-two of 31 patients (71%) died in the neonatal period or in childhood. Additional cerebral malformations were found in 80% and systemic malformations in 74%. The majority of patients had developmental delay, intellectual deficit, and intractable epilepsy. Patients with unilateral focal NHs were more likely to have ventriculomegaly (p = 0.027), and those with bilateral diffuse NHs more likely to have cerebellar abnormalities (p = 0.007). Isolated subcortical NHs were associated with multiple malformations (p = 0.049) and cardiac abnormalities (p = 0.027). Underlying etiology was heterogeneous and determined in only six cases (19%): del chr 1p36, del chr 15q11, pyruvate dehydrogenase deficiency, sialic acidosis type 1, Aicardi syndrome, and FLNA mutation. NHs are present in childhood as part of multiple cerebral and systemic malformations; developmental delay and refractory seizures are the rule rather than the exception. Milder forms go unrecognized until seizure onset in adulthood.
    Epilepsia 02/2011; 52(4):728-37. DOI:10.1111/j.1528-1167.2010.02975.x · 4.57 Impact Factor
Show more