Article

Capillary electrochromatographic analysis of barbiturates in serum

Nagasaki University, Nagasaki, Nagasaki, Japan
Electrophoresis (Impact Factor: 3.16). 02/2004; 25(4-5):594-9. DOI: 10.1002/elps.200305703
Source: PubMed

ABSTRACT A capillary electrochromatographic method was developed for the separation of barbiturates. The separation was optimized in a 75 microm ID capillary, packed with 3-(1,8-naphthalimido)propyl-modified silyl silica gel (NAIP), studying the effect of buffer pH, buffer concentration, and mobile phase composition. Using an applied voltage of 20 kV and the short-end injection method (9 cm capillary effective length), the mobile phase of 1.0 mM citrate buffer (pH 5.0) containing 40% methanol provided the baseline separation of barbital, phenobarbital, secobarbital, and thiopental (internal standard) in less than 4.5 min. The method was successfully applied to the analysis of barbiturates in human serum. Under the optimal conditions, good repeatability and linearity were obtained in the range of 2.90-43.29 microg/mL for barbital, phenobarbital, and secobarbital.

0 Followers
 · 
132 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Capillary electrochromatography (CEC) is a miniaturized separation technique that combines aspects of both interactive chromatography and capillary electrophoresis. In this chapter, the theory of CEC and the factors affecting separation such as the stationary phase and mobile phase parameters have been discussed. The chapter focuses on the types and preparation of columns for CEC and describes the progress made in the development of open-tubular, particle-packed, and monolithic columns. The detection techniques in CEC such as the traditional UV detection and improvements made in coupling with more sensitive detectors such as mass spectrometry are also described. The chapter provides a summary of some applications of CEC in the analysis of pharmaceuticals and biotechnology products.
    Separation Science and Technology 01/2008; 9:439-476. DOI:10.1016/S0149-6395(07)00017-7 · 1.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potential of 3-(4-sulfo-1,8-naphthalimido)propyl-modified silyl silica gel (SNAIP) as a mixed-mode stationary phase for capillary electrochromatography (CEC) was investigated for the separation of charged analytes, taking four amino acids (tyrosine, phenylalanine, tryptophan, histidine) as model analytes. The elution process of these charged analytes in CEC with SNAIP was dominated by a combination of both electrophoretic process and chromatographic process involving hydrophobic as well as electrostatic interactions. In order to study the retention mechanism, the CEC retention factor k* and the velocity factor ke* were measured for the amino acids, which allowed the assessment of the respective contribution from the differential processes underlying the separation. Migration and retention could be mediated by changing various mobile phase compositions, including buffer pH, buffer concentration, and concentration of organic solvent. Based on the results obtained by separation of the amino acids, the separation of eight peptides (Gly-Val, Gly-Phe, Gly-Ile, Gly-His, Gly-Lys, Lys-Lys, Gly-Gly-Gly, Gly-Gly-His) was attempted. A good separation was achieved under an isocratic elution with a mobile phase consisting of 35 mM phosphate buffer (pH 3.8) and 40% methanol.
    Electrophoresis 10/2004; 25(18-19):3224-30. DOI:10.1002/elps.200406019 · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The advantage of using a stepwise gradient of buffer concentration in CEC was demonstrated with the mixed-mode stationary phase, 3-(4-sulfo-1,8-naphthalimido)propyl-modified silyl silica gel (SNAIP). Before the application of a stepwise gradient, the effect of buffer concentration on the separations of six peptides and tryptic digests was investigated. Bubble formation caused by Joule heating at currents up to 95 microA was successfully suppressed by using SNAIP column even without pressurization, which contributed to a stepwise gradient of buffer concentration. Utilizing the stepwise gradient improved and shortened the separation of six peptides as compared to the separation under an isocratic elution.
    Journal of Chromatography A 03/2005; 1064(2):255-9. DOI:10.1016/j.chroma.2004.12.052 · 4.26 Impact Factor
Show more