FDG--a marker of tumour hypoxia? A comparison with [18F]fluoromisonidazole and pO2-polarography in metastatic head and neck cancer.

Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany.
European Journal of Nuclear Medicine (Impact Factor: 4.53). 12/2006; 33(12):1426-31. DOI: 10.1007/s00259-006-0175-6
Source: PubMed

ABSTRACT Experimental data suggest that the accumulation of [(18)F]fluorodeoxyglucose (FDG) in malignant tumours is related to regional hypoxia. The aim of this study was to evaluate the clinical potential of FDG positron emission tomography (PET) to assess tumour hypoxia in comparison with [(18)F]fluoromisonidazole (FMISO) PET and pO(2)-polarography.
Twenty-four patients with head and neck malignancies underwent FDG PET, FMISO PET, and pO(2)-polarography within 1 week. Parameters of pO(2)-polarography were the relative frequency of pO(2) readings <or=2.5 mmHg, <or=5 mmHg and <or=10 mmHg, respectively, as well as the mean and median pO(2).
We observed a moderate correlation of the maximum standardised uptake value (SUV) of FDG with the tumour to blood ratio of FMISO at 2 h (R=0.53, p<0.05). However, SUV of FDG was similar in hypoxic and normoxic tumours as defined by pO(2)-polarography (6.9+/-3.2 vs 6.2+/-3.0, NS), and the FDG uptake was not correlated with the results of pO(2)-polarography. The retention of FMISO was significantly higher in hypoxic tumours than in normoxic tumours (tumour to muscle ratio at 2 h: 1.8+/-0.4 vs 1.4+/-0.1, p<0.05), and the FMISO tumour to muscle ratio showed a strong correlation with the frequency of pO(2) readings <or=5 mmHg (R=0.80, p<0.001).
These results support the hypothesis that tumour hypoxia has an effect on glucose metabolism. However, other factors affecting FDG uptake may be more predominant in chronic hypoxia, and thus FDG PET cannot reliably differentiate hypoxic from normoxic tumours.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia.
    American Journal of Nuclear Medicine and Molecular Imaging 01/2014; 4(6):490-506.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography (PET) is one of the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. The principal goal of PET imaging is to visualize, characterize, and measure biological processes at the cellular, subcellular, and molecular levels in living subjects using noninvasive procedures. PET imaging takes advantage of the traditional diagnostic imaging techniques and introduces positron-emitting probes to determine the expression of indicative molecular targets at different stages of cancer progression. Although [(18)F]fluorodeoxyglucose ([(18)F]FDG)-PET has been widely utilized for staging and restaging of cancer, evaluation of response to treatment, differentiation of post-therapy alterations from residual or recurrent tumor, and assessment of prognosis, [(18)F]FDG is not a target-specific PET tracer. Over the last decade, numerous target-specific PET tracers have been developed and evaluated in preclinical and clinical studies. This review provides an overview of the current status and trends in the development of non-[(18)F]FDG PET probes in oncology and their application in the investigation of cancer biology.
    Seminars in Oncology 02/2011; 38(1):70-86. · 4.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancers of the head and neck are a malignancy causing a considerable health burden. In head and neck cancer patients, tumor hypoxia has been shown to be an important predictor of response to therapy and outcome. Several imaging modalities can be used to determine the amount and localization of tumor hypoxia. Especially PET has been used in a number of studies analyzing this phenomenon. However, only few studies have reported the characteristics and development during (chemoradio-) therapy. Yet, the characterization of tumor hypoxia in the course of treatment is of great clinical importance. Successful delineation of hypoxic subvolumes could make an inclusion into radiation treatment planning feasible, where dose painting is hypothesized to improve the tumor control probability. So far, hypoxic subvolumes have been shown to undergo changes during therapy; in most cases, a reduction in tumor hypoxia can be seen, but there are also differing observations. In addition, the hypoxic subvolumes have mostly been described as geographically rather stable. However, studies specifically addressing these issues are needed to provide more data regarding these initial findings and the hypotheses connected with them.
    Frontiers in Oncology 01/2013; 3:223.