Gene expression profiling in schizophrenia and related mental disorders.

Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Saitama, Japan.
The Neuroscientist (Impact Factor: 7.62). 09/2006; 12(4):349-61. DOI: 10.1177/1073858406287536
Source: PubMed

ABSTRACT The etiology and pathophysiology of schizophrenia and related mental disorders such as bipolar disorder and major depression remain largely unclear. Recent advances in mRNA profiling techniques made it possible to perform genome-wide gene expression analysis in a hypothesis-free manner. It was thought that this large-scale data mining approach would reveal unknown molecular cascades involved in mental disorders. Contrary to this initial expectation, however, DNA microarray results in psychiatric fields have been notoriously discordant. Here the authors review the findings of DNA microarray analysis, focusing on systematic gene expression changes in schizophrenia, as well as alterations in the expression of specific genes, that have been reported and replicated. The authors also address the probable causes for the discordance among studies, possible ways to solve the problem, and their preferred approach for data interpretation.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Disrupted synchronized oscillatory firing of pyramidal neuronal networks in the cerebral cortex in the gamma frequency band (i.e. 30-100 Hz) mediates many of the cognitive deficits and symptoms of schizophrenia. In fact, the density of dendritic spines and the average somal area of pyramidal neurons in layer 3 of the cerebral cortex, which mediate both long-range (associational) and local (intrinsic) corticocortical connections, are decreased in subjects with this illness. To explore the molecular pathophysiology of pyramidal neuronal dysfunction, we extracted ribonucleic acid (RNA) from laser-captured pyramidal neurons from layer 3 of Brodmann's area 42 of the superior temporal gyrus (STG) from postmortem brains from schizophrenia and normal control subjects. We then profiled the messenger RNA (mRNA) expression of these neurons, using microarray technology. We identified 1,331 mRNAs that were differentially expressed in schizophrenia, including genes that belong to the transforming growth factor beta (TGFβ) and the bone morphogenetic proteins (BMP) signaling pathways. Disturbances of these signaling mechanisms may in part contribute to the altered expression of other genes found to be differentially expressed in this study, such as those that regulate extracellular matrix (ECM), apoptosis and cytoskeletal and synaptic plasticity. In addition, we identified 10 miRNAs that were differentially expressed in schizophrenia; enrichment analysis of their predicted gene targets revealed signaling pathways and gene networks that were found by microarray to be dysregulated, raising an interesting possibility that dysfunction of pyramidal neurons in schizophrenia may in part be mediated by a concerted dysregulation of gene network functions as a result of the altered expression of a relatively small number of miRNAs. Taken together, findings of this study provide a neurobiological framework within which specific hypotheses about the molecular mechanisms of pyramidal cell dysfunction in schizophrenia can be formulated.
    Journal of neurogenetics 04/2014; 28(1-2). DOI:10.3109/01677063.2014.882918 · 1.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation. This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness.
    BMC Medical Genomics 05/2015; 8(1):23. DOI:10.1186/s12920-015-0098-9 · 3.91 Impact Factor