Article

PCR detection of granulocytic Anaplasma and Babesia in Ixodes ricinus ticks and birds in west-central Poland.

Departament of Genetics, Faculty of Biology, Szczecin University, Al. Piastow 40B, 71-065 Szczecin, Poland.
Annals of agricultural and environmental medicine: AAEM (Impact Factor: 3.06). 02/2006; 13(1):21-3.
Source: PubMed

ABSTRACT The aim of the study was to establish the role of forest birds as reservoirs of Anaplasma phagocytophilum and Babesia spp. in Wielkopolski National Park. A total of 108 birds from 9 species were collected between May-September 2002. Blood samples were taken from 84 specimens and 442 individuals of the common tick, Ixodes ricinus, were collected from the birds. The 73 additional ticks were collected from vegetation. PCR amplification of a fragment of the epank 1 gene and 18S rRNA gene was used for detection of A. phagocytophilum and Babesia spp. DNA, respectively. Pathogen DNA was not detected in any of the blood samples or ticks collected from birds. On the other hand, 3 ticks collected from vegetation (4.1% of all examined specimens) were positive for A. phagocytophilum DNA. In spite of the high level of infestation of birds by I. ricinus, it is clear that they do not constitute a competent reservoir of A. phagocytophilum and Babesia in WNP. Additionally, I. ricinus is not a significant vector in this area.

0 Bookmarks
 · 
215 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA analysis of blood meals from unfed nymphal Ixodes ricinus allows for the identification of tick host and tick-borne pathogens in the host species. The recognition of host species for tick larvae and the reservoirs of Borrelia, Rickettsia and Anaplasma species were simultaneously carried out by analysis of the blood meals of 880 questing nymphal I. ricinus ticks collected in forest parks of Szczecin city and rural forests in northwestern Poland that are endemic areas for Lyme borreliosis. The results obtained from the study indicate that I. ricinus larvae feed not only on small or medium animals but also on large animals and they (i.e. roe deer, red deer and wild boars) were the most prevalent in all study areas as the essential hosts for larvae of I. ricinus. The composition of medium and small vertebrates (carnivores, rodents, birds and lizards) provided a more diverse picture depending on study site. The reservoir species that contain the most pathogens are the European roe deer Capreolus capreolus, in which two species of Rickettsia and two species of Borrelia were identified, and Sus scrofa, in which one Rickettsia and three Borrelia species were identified. Rickettsia helvetica was the most common pathogen detected, and other included species were the B. burgdorferi s.l. group and B. miyamotoi related to relapsing fever group. Our results confirmed a general association of B. garinii with birds but also suggested that such associations may be less common in the transmission cycle in natural habitats than what was thought previously.
    Experimental and Applied Acarology 12/2013; · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
    Frontiers in Cellular and Infection Microbiology 01/2013; 3:31. · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the involvement of birds in the ecology of the western black-legged tick, Ixodes pacificus, and its associated zoonotic bacteria, Borrelia burgdorferi and Anaplasma phagocytophilum, at two interior coast-range study sites in northern California. Anaplasma phagocytophilum, the agent of granulocytic anaplasmosis (GA), and B. burgdorferi s.s., the agent of Lyme disease (LD), are tick-borne pathogens that are well established in California. We screened blood and ticks from 349 individual birds in 48 species collected in 2011 and 2012 using pathogen-specific PCR. A total of 617 immature I. pacificus was collected with almost three times as many larvae than nymphs. There were 7.5 times more I. pacificus at the Napa County site compared to the Yolo County site. Two of 74 (3%) nymphal pools from an Oregon junco (Junco hyemalis) and a hermit thrush (Catharus guttatus) and 4 individual larvae (all from Oregon juncos) were PCR-positive for B. burgdorferi. Blood samples from a golden-crowned sparrow (Zonotrichia atricapilla) and a European starling (Sturnus vulgaris) were positive for A. phagocytophilum DNA at very low levels. Birds that forage on ground or bark and nest on the ground, as well as some migratory species, are at an increased risk for acquiring I. pacificus. Our findings show that birds contribute to the ecologies of LD and GA in California by serving as a blood-meal source, feeding and transporting immature I. pacificus, and sometimes as a source of Borrelia infection.
    Ticks and Tick-borne Diseases 01/2014; · 2.35 Impact Factor

Full-text

Download
5 Downloads
Available from