Genotype-phenotype correlation in Smith-Magenis syndrome: Evidence that multiple genes in 17p11.2 contribute to the clinical spectrum

University of Toronto, Toronto, Ontario, Canada
Genetics in Medicine (Impact Factor: 6.44). 07/2006; 8(7):417-27. DOI: 10.1097/01.gim.0000228215.32110.89
Source: PubMed

ABSTRACT Smith-Magenis syndrome (SMS) is a complex disorder that includes mental retardation, craniofacial and skeletal anomalies, and behavioral abnormalities. We report the molecular and genotype-phenotype analyses of 31 patients with SMS who carry 17p11.2 deletions or mutations in the RAI1 gene.
Patients with SMS were evaluated by fluorescence in situ hybridization and/or sequencing of RAI1 to identify 17p11.2 deletions or intragenic mutations, respectively, and were compared for 30 characteristic features of this disorder by the Fisher exact test.
In our cohort, 8 of 31 individuals carried a common 3.5 Mb deletion, whereas 10 of 31 individuals carried smaller deletions, two individuals carried larger deletions, and one individual carried an atypical 17p11.2 deletion. Ten patients with nondeletion harbored a heterozygous mutation in RAI1. Phenotypic comparison between patients with deletions and patients with RAI1 mutations show that 21 of 30 SMS features are the result of haploinsufficiency of RAI1, whereas cardiac anomalies, speech and motor delay, hypotonia, short stature, and hearing loss are associated with 17p11.2 deletions rather than RAI1 mutations (P<.05). Further, patients with smaller deletions show features similar to those with RAI1 mutations.
Although RAI1 is the primary gene responsible for most features of SMS, other genes within 17p11.2 contribute to the variable features and overall severity of the syndrome.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Smith-Magenis syndrome is a complex genomic disorder in which a majority of individuals are obese by adolescence. While an interstitial deletion of chromosome 17p11.2 is the leading cause, mutation or deletion of the RAI1 gene alone results in most features of the disorder. Previous studies have shown that heterozygous knockout of Rai1 results in an obese phenotype in mice and that Smith-Magenis syndrome mouse models have a significantly reduced fecundity and an altered transmission pattern of the mutant Rai1 allele, complicating large, extended studies in these models. In this study, we show that breeding C57Bl/6J Rai1+/- mice with FVB/NJ to create F1 Rai1+/- offspring in a mixed genetic background ameliorates both fecundity and Rai1 allele transmission phenotypes. These findings suggest that the mixed background provides a more robust platform for breeding and larger phenotypic studies. We also characterized the effect of dietary intake on Rai1+/- mouse growth during adolescent and early adulthood developmental stages. Animals fed a high carbohydrate or a high fat diet gained weight at a significantly faster rate than their wild type littermates. Both high fat and high carbohydrate fed Rai1+/- mice also had an increase in body fat and altered fat distribution patterns. Interestingly, Rai1+/- mice fed different diets did not display altered fasting blood glucose levels. These results suggest that dietary regimens are extremely important for individuals with Smith- Magenis syndrome and that food high in fat and carbohydrates may exacerbate obesity outcomes.
    PLoS ONE 08/2014; 9(8):e105077. DOI:10.1371/journal.pone.0105077 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report our experience with high resolution microarray analysis in infants and young children with developmental disability and/or aberrant behavior enrolled at the Centro Ann Sullivan del Peru in Lima, Peru, a low income country. Buccal cells were collected with cotton swabs from 233 participants for later DNA isolation and identification of copy number variation (deletions/duplications) and regions of homozygosity (ROH) for estimating consanguinity status in 15 infants and young children (12 males, 3 females; mean age ± SD = 28.1 m ± 7.9 m; age range 14 m-41 m) randomly selected for microarray analysis. An adequate DNA yield was found in about one-half of the enrolled participants. Ten participants showed deletions or duplications containing candidate genes reported to impact behavior or cognitive development. Five children had ROHs which could have harbored recessive gene alleles contributing to their clinical presentation. The coefficient of inbreeding was calculated and three participants showed first-second cousin relationships, indicating consanguinity. Our preliminary study showed that DNA isolated from buccal cells using cotton swabs was suboptimal, but yet in a subset of participants the yield was adequate for high resolution microarray analysis and several genes were found that impact development and behavior and ROHs identified to determine consanguinity status.
    01/2014; 2014:408516. DOI:10.1155/2014/408516
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinoic acid induced-1 (RAI1) is an important yet understudied histone code reader that when mutated in humans results in Smith-Magenis syndrome (SMS), a neurobehavioral disorder accompanied by signature craniofacial abnormalities. Despite previous studies in mouse and human cell models, very little is known about the function of RAI1 during embryonic development. In the present study, we have turned to the model vertebrates Xenopus laevis and Xenopus tropicalis to better understand the developmental roles of Rai1. First we demonstrate that the Rai1 protein sequence is conserved in frogs, especially in known functional domains. By in situ hybridization we revealed expression of rai1 in the developing craniofacial tissues and the nervous system. Knockdown of Rai1 using antisense morpholinos resulted in defects in the developing brain and face. In particular, Rai1 morphants display midface hypoplasia and malformed mouth shape analogous to defects in humans with SMS. These craniofacial defects were accompanied with aberrant neural crest migration and reduction in the size of facial cartilage elements. Rai1 morphants also had defects in axon patterns and decreased forebrain ventricle size. Such brain defects correlated with a decrease in the neurotrophic factor, bdnf, and increased forebrain apoptosis. Our results emphasize a critical role of Rai1 for normal neural and craniofacial development, and further the current understanding of potential mechanisms that cause SMS.
    Mechanisms of Development 05/2014; 133. DOI:10.1016/j.mod.2014.05.004 · 2.24 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014