Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves.

Division of Biology, Kansas State University, Manhattan, 66506, USA.
Plant physiology (Impact Factor: 7.39). 10/2006; 142(1):28-39. DOI: 10.1104/pp.106.082115
Source: PubMed

ABSTRACT Although oxylipins can be synthesized from free fatty acids, recent evidence suggests that oxylipins are components of plastid-localized polar complex lipids in Arabidopsis (Arabidopsis thaliana). Using a combination of electrospray ionization (ESI) collisionally induced dissociation time-of-flight mass spectrometry (MS) to identify acyl chains, ESI triple-quadrupole (Q) MS in the precursor mode to identify the nominal masses of complex polar lipids containing each acyl chain, and ESI Q-time-of-flight MS to confirm the identifications of the complex polar lipid species, 17 species of oxylipin-containing phosphatidylglycerols, monogalactosyldiacylglycerols (MGDG), and digalactosyldiacylglycerols (DGDG) were identified. The oxylipins of these polar complex lipid species include oxophytodienoic acid (OPDA), dinor-OPDA (dnOPDA), 18-carbon ketol acids, and 16-carbon ketol acids. Using ESI triple-Q MS in the precursor mode, the accumulation of five OPDA- and/or dnOPDA-containing MGDG and two OPDA-containing DGDG species were monitored as a function of time in mechanically wounded leaves. In unwounded leaves, the levels of these oxylipin-containing complex lipid species were low, between 0.001 and 0.023 nmol/mg dry weight. However, within the first 15 min after wounding, the levels of OPDA-dnOPDA MGDG, OPDA-OPDA MGDG, and OPDA-OPDA DGDG, each containing two oxylipin chains, increased 200- to 1,000-fold. In contrast, levels of OPDA-hexadecatrienoic acid MGDG, linolenic acid (18:3)-dnOPDA MGDG, OPDA-18:3 MGDG, and OPDA-18:3 DGDG, each containing a single oxylipin chain, rose 2- to 9-fold. The rapid accumulation of high levels of galactolipid species containing OPDA-OPDA and OPDA-dnOPDA in wounded leaves is consistent with these lipids being the primary products of plastidic oxylipin biosynthesis.

Download full-text


Available from: Ruth Welti, Jun 23, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: From the aerial parts of Salvia adenophora Fernald four derivatives of 12-oxo-phytodienoic acid (1-4) together with five clerodane diterpenoids (5, 6, 8-10), and one known diterpene (7) have been isolated. Compounds 1-6 and 8-10 are described for the first time. The structures were established by extensive 1D, 2D NMR and HRESI-TOFMS spectroscopic methods. Finally, the absolute configuration has been established by comparing of experimental and quantum chemical calculation of ECD spectra. Despite a total lack of antimicrobial activity of the plant extract, hinting to the existence of antagonistic interactions in the crude material, three oxylipins (2-4) displayed a promising inhibition on Gram-positive multidrug-resistant clinical strains including Staphylococcus aureus, Streptococcus agalactiae and, particularly, Staphylococcus epidermidis, while the compounds 9 and 10 revealed a specific and strain-dependent activity against S. epidermidis. Interestingly, the inhibition provided by these compounds was independent of the resistance patterns of these pathogens to classic antibiotics. No action was reported on Gram-negative strains nor on Candida albicans. These results confirm that clerodanes and, particularly, prostaglandin-like compounds can be considered as interesting antimicrobial agents deserving further study. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Phytochemistry 11/2014; 110. DOI:10.1016/j.phytochem.2014.10.033 · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytidinediphosphate diacylglycerol synthase (CDS) catalyzes the activation of phosphatidic acid to CDP-diacylglycerol, a central intermediate in glycerolipid biosynthesis of prokaryotic and eukaryotic organisms. CDP-diacylglycerol is the precursor to phosphatidylinositol, phosphatidylglycerol and cardiolipin of eukaryotic phospholipids that are essential for various cellular functions. CDS isoforms are located in plastids, mitochondria and the endomembrane system of plants and are encoded by five genes in Arabidopsis. Two genes have previously been shown to code for the plastidial isoforms which are indispensable for the biosynthesis of plastidial PG and, thus, biogenesis and function of thylakoid membranes. Here we have focused on the extraplastidial CDS isoforms, encoded by CDS1 and CDS2 which are constitutively expressed contrary to CDS3. We provided evidence that these closely related CDS genes code for membrane proteins located in the ER and possess very similar enzymatic properties. Development and analysis of Arabidopsis mutants lacking either one or both CDS1 and CDS2 genes clearly showed that these two genes have redundant functions. As reflected in the seedling lethal phenotype of the cds1cds2 double mutant, plant cells require at least one catalytically active microsomal CDS isoform for cell division and expansion. According to the altered glycerolipid composition of the double mutant in comparison to wild type seedlings, it is likely that the drastic decrease in the level of phosphatidylinositol and the increase in phosphatidic acid cause defects in cell division and expansion. This article is protected by copyright. All rights reserved.
    The Plant Journal 05/2013; DOI:10.1111/tpj.12248 · 6.82 Impact Factor
  • Source
    Lipid Metabolism, Edited by Rodrigo Valenzuela Baez, 01/2013: chapter 16; InTech., ISBN: 978-953-51-0944-0