Article

DAPK1 variants are associated with Alzheimer's disease and allele-specific expression.

Celera Diagnostics, Alameda, CA 94502, USA.
Human Molecular Genetics (Impact Factor: 6.68). 09/2006; 15(17):2560-8. DOI: 10.1093/hmg/ddl178
Source: PubMed

ABSTRACT Genetic factors play an important role in the etiology of late-onset Alzheimer's disease (LOAD). We tested gene-centric single nucleotide polymorphisms (SNPs) on chromosome 9 and identified two SNPs in the death-associated protein kinase, DAPK1, that show significant association with LOAD. SNP rs4878104 was significantly associated with LOAD in our discovery case-control sample set (WU) and replicated in each of two initial validation case-control sample sets (P<0.05, UK1, SD). The risk-allele frequency of this SNP showed a similar direction in three other case-control sample sets. A meta-analysis of the six sample sets combined, totaling 2012 cases and 2336 controls, showed an allelic P-value of 0.0016 and an odds ratio (OR) of 0.87 (95%CI: 0.79-0.95). Minor allele homozygotes had a consistently lower risk than major allele homozygotes in the discovery and initial two replication sample sets, which remained significant in the meta-analysis of all six sample sets (OR=0.7, 95%CI: 0.58-0.85), whereas the risk for heterozygous subjects was not significantly different from that of major allele homozygotes. A second SNP, rs4877365, which is in high linkage disequilibrium with rs4878104 (r2=0.64), was also significantly associated with LOAD (meta P=0.0017 in the initial three sample sets). Furthermore, DAPK1 transcripts show differential allelic gene expression, and both rs4878104 and rs4877365 were significantly associated with DAPK1 allele-specific expression (P=0.015 to <0.0001). These data suggest that genetic variation in DAPK1 modulates susceptibility to LOAD.

Download full-text

Full-text

Available from: Petra Nowotny, Jun 20, 2015
0 Followers
 · 
153 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pin1 is a phospho-specific prolyl isomerase that regulates numerous key signaling molecules and whose deregulation contributes to disease notably cancer. However, since prolyl isomerases are often believed to be constitutively active, little is known whether and how Pin1 catalytic activity is regulated. Here, we identify death-associated protein kinase 1 (DAPK1), a known tumor suppressor, as a kinase responsible for phosphorylation of Pin1 on Ser71 in the catalytic active site. Such phosphorylation fully inactivates Pin1 catalytic activity and inhibits its nuclear location. Moreover, DAPK1 inhibits the ability of Pin1 to induce centrosome amplification and cell transformation. Finally, Pin1 pSer71 levels are positively correlated with DAPK1 levels and negatively with centrosome amplification in human breast cancer. Thus, phosphorylation of Pin1 Ser71 by DAPK1 inhibits its catalytic activity and cellular function, providing strong evidence for an essential role of the Pin1 enzymatic activity for its cellular function.
    Molecular cell 04/2011; 42(2):147-59. DOI:10.1016/j.molcel.2011.03.005 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Death associated protein kinase (DAPK) is a calmodulin (CaM)-regulated protein kinase that is a therapeutic target for central nervous system (CNS) disorders. We report here the results of studies that test the hypothesis of McNamara et al. (2009) that conformational selection in DAPK's glycine-rich region is key for catalytic activity. The hypothesis was tested by site-directed mutagenesis of glutamine-23 (Q23) in the middle of this loop. The glycine-rich loop exhibits localized differences in structure among DAPK conformations that correlate with different stages of the catalytic cycle. Changing the Q23 to a Valine (V23), found at the corresponding position in another CaM regulated protein kinase, results in a reduced catalytic efficiency. High resolution X-ray crystal structures of various conformations of the Q23V mutant DAPK and their superimposition with the corresponding conformations from wild type catalytic domain reveal localized changes in the glycine-rich region. The effect of the mutation on DAPK catalytic activity and the finding of only localized changes in the DAPK structure provide experimental evidence implicating conformational selection in this domain with activity. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
    Biochimica et Biophysica Acta 11/2010; 1813(5):1068-73. DOI:10.1016/j.bbamcr.2010.11.011 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three decades of genetic research in Alzheimer disease (AD) have substantially broadened our understanding of the pathogenetic mechanisms leading to neurodegeneration and dementia. Positional cloning led to the identification of rare, disease-causing mutations in APP, PSEN1, and PSEN2 causing early-onset familial AD, followed by the discovery of APOE as the single most important risk factor for late-onset AD. Recent genome-wide association approaches have delivered several additional AD susceptibility loci that are common in the general population, but exert only very small risk effects. As a result, a large proportion of the heritability of AD continues to remain unexplained by the currently known disease genes. It seems likely that much of this "missing heritability" may be accounted for by rare sequence variants, which, owing to recent advances in high-throughput sequencing technologies, can now be assessed in unprecedented detail.
    Neuron 10/2010; 68(2):270-81. DOI:10.1016/j.neuron.2010.10.013 · 15.98 Impact Factor