Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation.

Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
The Journal of Immunology (Impact Factor: 5.36). 09/2006; 177(3):1434-43. DOI: 10.4049/jimmunol.177.3.1434
Source: PubMed

ABSTRACT Recent reports concluded that tripeptidyl peptidase (TPPII) is essential for MHC class I Ag presentation and that the proteasome in vivo mainly releases peptides 16 residues or longer that require processing by TPPII. However, we find that eliminating TPPII from human cells using small interfering RNA did not decrease the overall supply of peptides to MHC class I molecules and reduced only modestly the presentation of SIINFEKL from OVA, while treatment with proteasome inhibitors reduced these processes dramatically. Purified TPPII digests peptides from 6 to 30 residues long at similar rates, but eliminating TPPII in cells reduced the processing of long antigenic precursors (14-17 residues) more than short ones (9-12 residues). Therefore, TPPII appears to be the major peptidase capable of processing proteasome products longer than 14 residues. However, proteasomes in vivo (like purified proteasomes) release relatively few such peptides, and these peptides processed by TPPII require further trimming in the endoplasmic reticulum (ER) by ER aminopeptidase 1 for presentation. Taken together, these observations demonstrate that TPPII plays a specialized role in Ag processing and one that is not essential for the generation of most presented peptides. Moreover, these findings reveal that three sequential proteolytic steps (by proteasomes, TPPII, and then ER aminopepsidase 1) are required for the generation of a subset of epitopes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.
    Viruses 08/2014; 6(8):3271-3292. DOI:10.3390/v6083271 · 3.28 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years.
    Virology 01/2015; 475:88-95. DOI:10.1016/j.virol.2014.11.008 · 3.35 Impact Factor


Available from