Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy.

Department of Clinical and Experimental Medicine, Division of Metabolic Diseases, University of Padova, School of Medicine, Italy.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 5.53). 10/2006; 26(9):2140-6. DOI: 10.1161/01.ATV.0000237750.44469.88
Source: PubMed

ABSTRACT Peripheral arterial disease (PAD) is a threatening complication of diabetes. As endothelial progenitor cells (EPCs) are involved in neovasculogenesis and maintenance of vascular homeostasis, their impairment may have a role in the pathogenesis of diabetic vasculopathy. This study aimed to establish whether number and function of EPCs correlate with PAD severity in type 2 diabetic patients.
EPCs were defined by the expression of CD34, CD133 and KDR, and quantified by flow cytometry in 127 diabetic patients with and without PAD. PAD severity has been assessed as carotid atherosclerosis and clinical stage of leg atherosclerosis obliterans. Diabetic patients with PAD displayed a significant 53% reduction in circulating EPCs versus non-PAD patients, and EPC levels were negatively correlated with the degree of carotid stenosis and the stage of leg claudication. Moreover, the clonogenic and adhesion capacity of cultured EPCs were significantly lower in diabetic patients with PAD versus patients without.
This study demonstrates that EPC decrease is related to PAD severity and that EPC function is altered in diabetic subjects with PAD, strengthening the pathogenetic role of EPC dysregulation in diabetic vasculopathy. EPC count may be considered a novel biological marker of peripheral atherosclerosis in diabetes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial dysfunction is a central hallmark of diabetes. The transcriptional coactivator PGC-1α is a powerful regulator of metabolism, but its role in endothelial cells remains poorly understood. We show here that endothelial PGC-1α expression is high in diabetic rodents and humans and that PGC-1α powerfully blocks endothelial migration in cell culture and vasculogenesis in vivo. Mechanistically, PGC-1α induces Notch signaling, blunts activation of Rac/Akt/eNOS signaling, and renders endothelial cells unresponsive to established angiogenic factors. Transgenic overexpression of PGC-1α in the endothelium mimics multiple diabetic phenotypes, including aberrant re-endothelialization after carotid injury, blunted wound healing, and reduced blood flow recovery after hindlimb ischemia. Conversely, deletion of endothelial PGC-1α rescues the blunted wound healing and recovery from hindlimb ischemia seen in type 1 and type 2 diabetes. Endothelial PGC-1α thus potently inhibits endothelial function and angiogenesis, and induction of endothelial PGC-1α contributes to multiple aspects of vascular dysfunction in diabetes.
    Cell metabolism 02/2014; 19(2):246-58. DOI:10.1016/j.cmet.2013.12.014 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional impairment, functional decline, and mobility loss are major public health problems in people with lower extremity peripheral artery disease (PAD). Few medical therapies significantly improve walking performance in PAD. We describe methods for the PROgenitor cell release Plus Exercise to improve functionaL performance in PAD (PROPEL) Study, a randomized controlled clinical trial designed to determine whether granulocyte-macrophage colony stimulating factor (GM-CSF) combined with supervised treadmill walking exercise improves six-minute walk distance more than GM-CSF alone, more than supervised treadmill exercise alone, and more than placebo plus attention control in participants with PAD, respectively. PROPEL Study participants are randomized to one of four arms in a 2 by 2 factorial design. The four study arms are GM-CSF plus supervised treadmill exercise, GM-CSF plus attention control, placebo plus supervised exercise therapy, or placebo plus attention control. The primary outcome is change in six-minute walk distance at 12-week follow-up. Secondary outcomes include change in brachial artery flow-mediated dilation (FMD), change in maximal treadmill walking time, and change in circulating CD34+ cells at 12-week follow-up. Outcomes are also measured at six-week and six-month follow-up. Results of the PROPEL Study will have important implications for understanding mechanisms of improving walking performance and preventing mobility loss in the large and growing number of men and women with PAD.
    Contemporary clinical trials 09/2013; 36(2). DOI:10.1016/j.cct.2013.09.011 · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human endothelial progenitor cells (EPCs) have been generally defined as circulating cells that express a variety of cell surface markers similar to those expressed by vascular endothelial cells, adhere to endothelium at sites of hypoxia/ischemia, and participate in new vessel formation. Although no specific marker for an EPC has been identified, a panel of markers has been consistently used as a surrogate marker for cells displaying the vascular regenerative properties of the putative EPC. However, it is now clear that a host of hematopoietic and vascular endothelial subsets display the same panel of antigens and can only be discriminated by an extensive gene expression analysis or use of a variety of functional assays that are not often applied. This article reviews our current understanding of the many cell subsets that constitute the term EPC and provides a concluding perspective as to the various roles played by these circulating or resident cells in vessel repair and regeneration in human subjects.
    Cold Spring Harbor Perspectives in Medicine 07/2012; 2(7):a006692. DOI:10.1101/cshperspect.a006692 · 7.56 Impact Factor