Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells

Duke University, Durham, North Carolina, United States
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2006; 103(31):11707-12. DOI: 10.1073/pnas.0603806103
Source: PubMed

ABSTRACT Aldehyde dehydrogenase (ALDH) is an enzyme that is expressed in the liver and is required for the conversion of retinol (vitamin A) to retinoic acids. ALDH is also highly enriched in hematopoietic stem cells (HSCs) and is considered a selectable marker of human HSCs, although its contribution to stem cell fate remains unknown. In this study, we demonstrate that ALDH is a key regulator of HSC differentiation. Inhibition of ALDH with diethylaminobenzaldehyde (DEAB) delayed the differentiation of human HSCs that otherwise occurred in response to cytokines. Moreover, short-term culture with DEAB caused a 3.4-fold expansion in the most primitive assayable human cells, the nonobese diabetic/severe combined immunodeficiency mouse repopulating cells, compared with day 0 CD34(+)CD38(-)lin(-) cells. The effects of DEAB on HSC differentiation could be reversed by the coadministration of the retinoic acid receptor agonist, all-trans-retinoic acid, suggesting that the ability of ALDH to generate retinoic acids is important in determining HSC fate. DEAB treatment also caused a decrease in retinoic acid receptor-mediated signaling within human HSCs, suggesting directly that inhibition of ALDH promotes HSC self-renewal via reduction of retinoic acid activity. Modulation of ALDH activity and retinoid signaling is a previously unrecognized and effective strategy to amplify human HSCs.


Available from: Rachid Safi, Aug 13, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer progression involves a rare population of undifferentiated cancer-initiating cells that have stem cell-like properties for self-renewal capacity and high tumorigenicity. We investigated how maintenance of pancreatic cancer-initiating cells is influenced by Smad4, which is frequently deleted or mutated in pancreatic cancers cells. Smad4 silencing up-regulated the expression of aldehyde dehydrogenase 1 (ALDH1A1) mRNA, whereas forced expression of Smad4 in pancreatic cancer cells down-regulated it. Smad4 and ALDH1 expression inversely correlated in some human clinical pancreatic adenocarcinoma tissues, suggesting that ALDH1 in pancreatic cancer cells was associated with decreased Smad4 expression. We then examined whether ALDH1 served as a marker of pancreatic cancer-initiating cells. Pancreatic cancer cells contained ALDH1(hi) cells in 3% to 10% of total cells, with high tumorigenic potential. Because Smad4 is a major mediator of transforming growth factor (TGF)-β family signaling, we investigated the regulatory mechanism of ALDH activity by TGF-β and bone morphogenetic proteins. Treatment with TGF-β attenuated ALDH1(hi) cells in several pancreatic cancer cells, whereas bone morphogenetic protein-4 was not as potent. Biochemical experiments revealed that TGF-β regulated ALDH1A1 mRNA transcription through binding of Smad4 to its regulatory sequence. It appears that TGF-β negatively regulates ALDH1 expression in pancreatic cancer cells in a Smad-dependent manner and in turn impairs the activity of pancreatic cancer-initiating cells. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
    American Journal Of Pathology 03/2015; 185(5). DOI:10.1016/j.ajpath.2015.01.011 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells (CSCs) are a vital subpopulation of cells to target for the treatment of cancers. In oesophageal squamous cell carcinoma (ESCC), there are several markers such as CD44, ALDH, Pygo2, MAML1, Twist1, Musashi1, Side population (SP), CD271 and CD90 that have been proposed to identify the cancer stem cells in individual cancer masses. It has also been demonstrated that stem cell markers like ALDH1, HIWI, Oct3/4, ABCG2, SOX2, SALL4, BMI-1, NANOG, CD133 and podoplanin are associated with patient's prognosis, pathological stages, cancer recurrence and therapy resistance. Finding new cancer stem cell targets or designing drugs to manipulate the known molecular targets in CSCs could be useful for improvements in clinical outcomes of the disease. To conclude, data suggest that CSCs in oesophageal squamous cell carcinoma are related to resistance to therapy and poor prognosis of patients with ESCC. Therefore, innovative insights into CSC biology and CSC-targeted therapies will help to achieve more effective management of patients with oesophageal squamous cell carcinoma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Critical reviews in oncology/hematology 04/2015; DOI:10.1016/j.critrevonc.2015.04.007 · 4.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently published articles have reported the controversial data regarding expression of aldehyde dehydrogenase isozyme 1A1 (ALDH1A1), a potential candidate marker for normal and cancer stem cells (CSCs), in thyroid tissues. These data prompted us to re-evaluate expression of ALDH1A1 in normal and cancerous thyroid tissues by 2 different means. The first method was immunohistochemistry with 2 different anti-ALDH1A1 antibodies from distinct companies. Following validating the integrity of these 2 antibodies by Western blotting with ALDH-expressing and nonexpressing cancer cell lines and immunohistochemistry with breast and colon tissues, we report here significant and comparable expression of ALDH1A1 in both normal and cancerous thyroid tissues with both antibodies. Next, relative expression levels of ALDH isozymes were evaluated by reverse transcription-polymerase chain reaction (RT-PCR), revealing that ALDH1A1 was the most highly expressed isozyme followed by ALDH9A1 and relative expression patterns of isozymes were very similar in normal and cancerous tissues. All these data demonstrate that thyroid cells of normal and cancer origins do express ALDH1A1 and to a lesser extent 9A1. Further study will be necessary to study functional significance of ALDH1A1 in the function and behaviors of thyroid normal and cancer stem cells.
    Hormone and Metabolic Research 09/2014; 47(03). DOI:10.1055/s-0034-1387770 · 2.04 Impact Factor