Tumor cell dormancy induced by p38(SAPK) and ER-stress signaling - An adaptive advantage for metastatic cells?

Department of Biomedical Sciences, School of Public Health and Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, NY 12144-3456, USA.
Cancer biology & therapy (Impact Factor: 3.63). 08/2006; 5(7):729-35. DOI: 10.4161/cbt.5.7.2968
Source: PubMed

ABSTRACT The mechanisms that determine whether a tumor cell that has disseminated to a secondary site will resume growth immediately, die or enter a state of dormancy are poorly understood. Although tumor dormancy represents a common clinical finding, studying the mechanisms behind this stage of tumor progression has been challenging. Furthermore, it is thought that dormant tumor cells are refractory to chemotherapy due to their lack of proliferation. However, whether this is the only reason for their chemo-resistance remains to be proven. In this review we summarize recent findings that provide a mechanistic explanation about how stress signaling through the p38(SAPK) pathway and ER-stress signaling may coordinate the induction of growth arrest and drug-resistance in a model of squamous carcinoma dormancy. We further discuss how dormant tumor cells may enter this stage to adapt to strenuous conditions that do not favor immediate growth after dissemination. Finally, we propose that this response may recapitulate an evolutionarily conserved program of life-span extension through adaptation and tolerance to stress.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis is an extremely complex process that accounts for most cancer-related deaths. Malignant primary tumors can be removed surgically, but the cells that migrate, invade, and proliferate at distant organs are often the cells that prove most difficult to target therapeutically. There is growing evidence that host factors outside of the primary tumors are of major importance in the development of metastasis. Recently, we have shown that the bromodomain-containing protein 4 or bromodomain 4 (Brd4) functions as an inherited susceptibility gene for breast cancer progression and metastasis. In this paper, we will discuss that host genetic background on which a tumor arises can significantly alter the biology of the subsequent metastatic disease, and we will focus on the role of Brd4 in regulating metastasis susceptibility.
    01/2012; 2012(2090-3170):670632. DOI:10.1155/2012/670632
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress signaling can be mediated by the ER kinase PERK, which phosphorylates its substrate eIF2alpha. This in turn, results in translational repression and the activation of downstream programs that can limit cell growth through cell cycle arrest and/or apoptosis. These responses can also be initiated by perturbations in cell adhesion. Thus, we hypothesized that adhesion-dependent regulation of PERK signaling might determine cell fate. We tested this hypothesis in a model of mammary acini development, a morphogenetic process regulated in part by adhesion signaling. Here we report a novel role for PERK in limiting MCF10A mammary epithelial cell proliferation during acinar morphogenesis in 3D Matrigel culture as well as in preventing mammary tumor formation in vivo. We show that loss of adhesion to a suitable substratum induces PERK-dependent phosphorylation of eIF2alpha and selective upregulation of ATF4 and GADD153. Further, inhibition of endogenous PERK signaling during acinar morphogenesis, using two dominant-negative PERK mutants (PERK-DeltaC or PERK-K618A), does not affect apoptosis but results instead in hyper-proliferative and enlarged lumen-filled acini, devoid of proper architecture. This phenotype correlated with an adhesion-dependent increase in translation initiation, Ki67 staining and upregulation of Laminin-5, ErbB1 and ErbB2 expression. More importantly, the MCF10A cells expressing PERKDeltaC, but not a vector control, were tumorigenic in vivo upon orthotopic implantation in denuded mouse mammary fat pads. Our results reveal that the PERK pathway is responsive to adhesion-regulated signals and that it is essential for proper acinar morphogenesis and in preventing mammary tumor formation. The possibility that deficiencies in PERK signaling could lead to hyperproliferation of the mammary epithelium and increase the likelihood of tumor formation, is of significance to the understanding of breast cancer.
    PLoS ONE 02/2007; 2(7):e615. DOI:10.1371/journal.pone.0000615
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with cancer can develop recurrent metastatic disease with latency periods that range from years even to decades. This pause can be explained by cancer dormancy, a stage in cancer progression in which residual disease is present but remains asymptomatic. Cancer dormancy is poorly understood, resulting in major shortcomings in our understanding of the full complexity of the disease. Here, I review experimental and clinical evidence that supports the existence of various mechanisms of cancer dormancy including angiogenic dormancy, cellular dormancy (G0-G1 arrest) and immunosurveillance. The advances in this field provide an emerging picture of how cancer dormancy can ensue and how it could be therapeutically targeted.
    Nature Reviews Cancer 12/2007; 7(11):834-46. DOI:10.1038/nrc2256