pH dependence of the electronic structure of glycine.

Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
The Journal of Physical Chemistry B (Impact Factor: 3.61). 03/2005; 109(11):5375-82. DOI: 10.1021/jp0457592
Source: PubMed

ABSTRACT The carbon, nitrogen, and oxygen K-edge spectra were measured for aqueous solutions of glycine by total electron yield near-edge X-ray absorption fine structure (TEY NEXAFS) spectroscopy. The bulk solution pH was systematically varied while maintaining a constant amino acid concentration. Spectra were assigned through comparisons with both previous studies and ab initio computed spectra of isolated glycine molecules and hydrated glycine clusters. Nitrogen K-edge solution spectra recorded at low and moderate pH are nearly identical to those of solid glycine, whereas basic solution spectra strongly resemble those of the gas phase. The carbon 1s --> pi*(C=O) transition exhibits a 0.2 eV red shift at high pH due to the deprotonation of the amine terminus. This deprotonation also effects a 1.4 eV red shift in the nitrogen K-edge at high pH. Two sharp preedge features at 401.3 and 402.5 eV are also observed at high pH. These resonances, previously observed in the vapor-phase ISEELS spectrum of glycine, have been reassigned as transitions to sigma* bound states. The observation of these peaks indicates that the amine moiety is in an acceptor-only hydrogen bond configuration at high pH. At low pH, the oxygen 1s --> pi*(C=O) transition exhibits a 0.25-eV red shift due to the protonation of the carboxylic acid terminus. These spectral differences indicate that the variations in electronic structure observed in the NEXAFS spectra are determined by the internal charge state and hydration environment of the molecule in solution.


Full-text (2 Sources)

Available from
Sep 3, 2014