Dose-modeling study to compare external beam techniques from protocol NSABP B-39/RTOG 0413 for patients with highly unfavorable cardiac anatomy.

Department of Radiation Oncology, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, USA.
International Journal of Radiation OncologyBiologyPhysics (Impact Factor: 4.52). 09/2006; 65(5):1368-74. DOI: 10.1016/j.ijrobp.2006.03.060
Source: PubMed

ABSTRACT The aim of this study was to select patients with heart anatomy that is specifically unfavorable for tangential irradiation in whole-breast radiotherapy (WBRT), to be used as an experimental cohort to compare cardiac dosimetric and radiobiological parameters of three-dimensional conformal external beam accelerated partial breast irradiation (3D-CRT APBI) to WBRT with techniques as defined by the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-39/Radiation Therapy Oncology Group (RTOG) 0413 clinical trial.
A dosimetric modeling study that compared WBRT and 3D-CRT APBI was performed on CT planning data from 8 patients with left-sided breast cancer. Highly unfavorable cardiac anatomy was defined by the measured contact of the myocardium with the anterior chest wall in the axial and para-sagittal planes. Treatment plans of WBRT and 3D-CRT APBI were generated for each patient in accordance with NSABP B-39/RTOG 0413 protocol. Dose-volume relationships of the heart, including the V5min (minimum dose delivered to 5% of the cardiac volume), biological effective dose (BED) of the V5min, and normal tissue complication probability (NTCP) were analyzed and compared.
Despite expected anatomic variation, significantly large differences were found favoring 3D-CRT APBI in cumulative dose-volume histograms (p < 0.01), dose to the entire heart (mean difference 3.85 Gy, p < 0.01), NTCP (median difference, 1.00 Gy; p < 0.01), V5min (mean difference, 24.53 Gy; p < 0.01), and proportional reduction in radiobiological effect on the V5min (85%, p < 0.01).
Use of 3D-CRT APBI can demonstrate improved sparing of the heart in select patients with highly unfavorable cardiac anatomy for WBRT, and may result in reduced risk of cardiac morbidity and mortality.

  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. METHODS AND MATERIALS: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference was greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. RESULTS: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. CONCLUSIONS: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.
    International journal of radiation oncology, biology, physics 09/2012; · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although 3D-conformal accelerated partial breast irradiation (APBI) is widely used, several questions still remain such as what are the optimal treatment planning modalities. Indeed, some patients may have an unfavorable anatomy and/or inadequate dosimetric constraints could be fulfilled ("complex cases"). In such cases, we wondered which treatment planning modality could be applied to achieve 3D-conformal APBI (2 mini-tangents and an "en face" electron field or non-coplanar photon multiple fields; or a mixed technique combining non-coplanar photon multiple fields with an "en face" electron beam). From October 2007 to March 2010, 55 patients with pT1N0 breast cancer were enrolled in a phase II APBI trial. Among them, 7 patients were excluded as they were considered as "complex cases". A dosimetric comparison was performed according to the 3 APBI modalities mentioned above and assessed: planning treatment volume (PTV) coverage, PTV/whole breast ratio, lung and heart distance within irradiated field and exposure of organs at risk (OAR). Adequate PTV coverage was obtained with the 3 different treatment planning. Regarding OAR exposure, the "mixed technique" seemed to reduce the volume of non-target breast tissue in 4 cases compared to the other techniques (in only 1 case), with the mean V50% at 44.9% (range, 13.4 - 56.9%) for the mixed modality compared to 51.1% (range, 22.4 - 63.4%) and 51.8% (range, 23.1 - 59.5%) for the reference and non-coplanar techniques, respectively. The same trend was observed for heart exposure. The mixed technique showed a promising trend of reducing the volume of non-target breast tissue and heart exposure doses in APBI "complex cases".
    Radiation Oncology 11/2011; 6:154. · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac toxicity is a side-effect of anti-cancer treatment including radiotherapy and this translational study was initiated to characterize radiation-induced cardiac side effects in a population of breast cancer patients and in experimental models in order to identify novel therapeutic target. The size of the heart was evaluated in CO-HO-RT patients by measuring the Cardiac-Contact-Distance before and after radiotherapy (48months of follow-up). In parallel, fibrogenic signals were studied in a severe case of human radiation-induced pericarditis. Lastly, radiation-induced cardiac damage was studied in mice and in rat neonatal cardiac cardiomyocytes. In patients, time dependent enhancement of the CCD was measured suggesting occurrence of cardiac hypertrophy. In the case of human radiation-induced pericarditis, we measured the activation of fibrogenic (CTGF, RhoA) and remodeling (MMP2) signals. In irradiated mice, we documented decreased contractile function, enlargement of the ventricular cavity and long-term modification of the time constant of decay of Ca(2+) transients. Both hypertrophy and amyloid deposition were correlated with the induction of Epac-1; whereas radiation-induced fibrosis correlated with Rho/CTGF activation. Transactivation studies support Epac contribution in hypertrophy stimulation and showed that radiotherapy and Epac displayed specific and synergistic signals. Epac-1 has been identified as a novel regulator of radiation-induced hypertrophy and amyloidosis but not fibrosis in the heart.
    Radiotherapy and Oncology 04/2014; · 4.52 Impact Factor