PDZK1 is required for maintaining hepatic scavenger receptor, class B, type I (SR-BI) steady state levels but not its surface localization or function

Pontifical Catholic University of Chile, CiudadSantiago, Santiago Metropolitan, Chile
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2006; 281(39):28975-80. DOI: 10.1074/jbc.M603802200
Source: PubMed

ABSTRACT PDZK1 is a multi-PDZ domain-containing adaptor protein that binds to the C terminus of the high density lipoprotein receptor, scavenger receptor, class B, type I (SR-BI), and controls the posttranscriptional, tissue-specific expression of this lipoprotein receptor. In the absence of PDZK1 (PDZK1(-/-) mice), murine hepatic SR-BI protein levels are very low (<5% of control). As a consequence, abnormal plasma lipoprotein metabolism ( approximately 1.5-1.7-fold increased total plasma cholesterol carried in both normal size and abnormally large high density lipoprotein particles) resembles, but is not as severely defective as, that in SR-BI(-/-) mice. Here we show that the total plasma cholesterol levels and size distribution of lipoproteins are virtually identical in SR-BI(-/-) and SR-BI(-/-)/PDZK1(-/-) mice, indicating that most, if not all of the effects of PDZK1 on lipoprotein metabolism are likely because of the effects of PDZK1 on SR-BI. Hepatic overexpression of wild-type SR-BI in PDZK1(-/-) mice restored near or greater than normal levels of cell surface-expressed, functional SR-BI protein levels in the livers of SR-BI(-/-)/PDZK1(-/-) mice and consequently restored apparently normal lipoprotein metabolism in the absence of PDZK1. Thus, PDZK1 is important for maintaining adequate steady state levels of SR-BI in the liver but is not essential for cell surface expression or function of hepatic SR-BI.

  • Source
    • "SR-BI contains two cytosolic regions, one of approximately 10 amino acids at its N-terminus and the other of ∼40 amino acids at its C-terminus [4]. The terminal 3-4 amino acids of the C-terminal cytosolic domain represents a binding site for an adaptor protein called PDZK1 which plays an important role in protecting SR-BI protein from degradation in hepatocytes [21] [22] [23]. The precise sequences that direct SR-BI towards degradation in the absence of PDZK1 binding remain to be identified; however it is presumed that they reside in the C-terminal cytosolic tail of SR-BI. "
    [Show abstract] [Hide abstract]
    ABSTRACT: SR-BI is a cell surface HDL receptor that mediates selective uptake of the lipid cargo of HDL, an important process in hepatocytes, driving reverse cholesterol transport from cells in the artery wall. To facilitate examination of factors that modulate SR-BI activity in hepatocytes, we have generated fluorescent protein-tagged versions of SR-BI that allow for facile monitoring of SR-BI protein levels and distribution in transfected cells. We show that deletion of the C-terminal cytosolic tail does not affect the distribution of SR-BI in HepG2 cells, nor is the C-terminal cytosolic tail required for SR-BI-mediated uptake of HDL lipids. We also demonstrate that the phorbol ester, PMA, increased, while protein kinase C inhibitors reduced SR-BI-mediated HDL lipid uptake in HepG2 cells. These data suggest that protein kinase C may modulate selective uptake of HDL lipids including cholesterol in hepatocytes, thereby influencing hepatic HDL cholesterol clearance and reverse cholesterol transport.
    Cholesterol 01/2011; 2011(2090-1283):687939. DOI:10.1155/2011/687939
  • Source
    • "PDZK1 is another member of the NHERF family that also binds to NHE3 (Gisler et al. 2003b), and it was therefore suggested to call it NHERF3. It is a multifunctional PDZ-domain protein with high expression levels in kidney, where it is involved in the scaffolding and regulation of a variety of membrane transporters (Gisler et al. 2003a,b; Thomson et al. 2005b; Kato et al. 2006), the liver, where it regulates the membrane abundance of the scavenger receptor (Kocher et al. 2003b; Yesilaltay et al. 2006) and in the intestine. We had previously studied electroneutral sodium absorption in the small intestine of pdzk1+/+ and −/− mice, and found a significantly reduced basal Na + absorptive rate "
    [Show abstract] [Hide abstract]
    ABSTRACT: The PDZ-binding protein PDZK1 (NHERF3/CAP70/PDZ-dc-1) in vitro binds to NHE3, but its role in the regulation of NHE3 activity in native enterocytes is unknown. This study was undertaken to understand the physiological role of PDZK1 in regulating NHE3 activity in native murine colonic enterocytes. NHE3 transport rates were assessed fluorometrically in BCECF-loaded colonic crypts in the NHE3-expressing cryptal openings by measuring acid-activated, Na+-dependent, Hoe 642-insensitive proton efflux rates. NHE3 mRNA expression levels and NHE3 total enterocyte and brush border membrane (BBM) protein abundance were determined by quantitative PCR and Western analysis and immunohistochemistry. In pdzk1-/- colonic surface cells, acid-activated NHE3 transport rates were strongly reduced, and the inhibitory effect of forskolin and ionomcyin was virtually abolished. Hyperosmolarity, on the other hand, still had an inhibitory effect. In addition, the NHE3-selective inhibitor S1611 inhibited acid-activated NHE3 activity in pdzk1-/- and +/+mice, suggesting that functional NHE3 is present in pdzk1-deficient colonocytes. NHE1 and NHE2 activity was not altered in pdzk1-/- colonic crypts. Immunohistochemistry revealed apical NHE3 staining in pdzk1-/- and +/+proximal colon, and Western blot analysis revealed no difference in NHE3 abundance in colonic enterocyte homogenate as well as brush border membrane. Lack of the PDZ-adaptor protein PDZK1 in murine proximal colonic enterocytes does not influence NHE3 abundance or targeting to the apical membrane, but abolishes NHE3 regulation by cAMPergic and Ca2+ -dependent pathways. It leaves NHE3 inhibition by hyperosmolarity intact, suggesting an important and selective role for PDZK1 in the agonist-mediated regulation of intestinal NHE3 activity.
    The Journal of Physiology 06/2007; 581(Pt 3):1235-46. DOI:10.1113/jphysiol.2007.131722 · 4.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: First Page of the Article
    Signals, Systems and Computers, 2005. Conference Record of the Thirty-Ninth Asilomar Conference on; 01/2005
Show more