Polygenic inherited predisposition to breast cancer.

Department of Oncology & Public Health & Cancer Research UK Genetic Epidemiology Unit, Strangeways Research Laboratories, University of Cambridge, UK.
Cold Spring Harbor Symposia on Quantitative Biology 02/2005; 70:35-41. DOI: 10.1101/sqb.2005.70.029
Source: PubMed

ABSTRACT The known breast cancer predisposing genes account for only about 20% of inherited susceptibility. Epidemiological analyses suggest that much of the remaining 80% is explained by the combined effect of many individually weak genetic variants, rather than by further rare, highly penetrant mutations. In the near term, identification of variants may indicate new pathways or mechanisms in breast cancer development. The polygenic model implies a wide distribution of risk in the population. In the longer term, it may be possible to construct individual risk profiles to guide public health interventions. The search for genetic variants has so far proved difficult. A key unanswered question is the "genetic architecture" of predisposition-that is, strong or weak alleles, common or rare. We describe a genome-wide scan designed to provide a first-pass answer to this question.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BRIP1 is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1 and plays an important role in BRCA1-dependent DNA repair and DNA damage-induced checkpoint control. Recent studies implicate BRIP1 as a moderate/low-penetrance breast cancer susceptibility gene. However, the phenotypic effects of BRIP1 dysfunction and its role in breast cancer tumorigenesis remain unclear. To explore the function of BRIP1 in acinar morphogenesis of mammary epithelial cells, we generated BRIP1-knockdown MCF-10A cells by short hairpin RNA (shRNA)-mediated RNA interference and examined its effect in a three-dimensional culture model. Genome-wide gene expression profiling by microarray and quantitative RT-PCR were performed to identify alterations in gene expression in BRIP1-knockdown cells compared with control cells. The microarray data were further investigated using the pathway analysis and Gene Set Enrichment Analysis (GSEA) for pathway identification. BRIP1 knockdown in non-malignant MCF-10A mammary epithelial cells by RNA interference induced neoplastic-like changes such as abnormal cell adhesion, increased cell proliferation, large and irregular-shaped acini, invasive growth, and defective lumen formation. Differentially expressed genes, including MCAM, COL8A1, WIPF1, RICH2, PCSK5, GAS1, SATB1, and ELF3, in BRIP1-knockdown cells compared with control cells were categorized into several functional groups, such as cell adhesion, polarity, growth, signal transduction, and developmental process. Signaling-pathway analyses showed dysregulation of multiple cellular signaling pathways, involving LPA receptor, Myc, Wnt, PI3K, PTEN as well as DNA damage response, in BRIP1-knockdown cells. Loss of BRIP1 thus disrupts normal mammary morphogenesis and causes neoplastic-like changes, possibly via dysregulating multiple cellular signaling pathways functioning in the normal development of mammary glands.
    PLoS ONE 09/2013; 8(9):e74013. DOI:10.1371/journal.pone.0074013 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of family history to the risk of breast cancer was analyzed by incorporating menopausal status in Hong Kong Chinese women, with a particular respect to the estrogen receptor-positive (ER+) type. Seven hundred and forty seven breast cancer incident cases and 781 hospital controls who had completed information on family cancer history in first-degree relatives (nature father, mother, and siblings) were recruited. Odds ratio for breast cancer were calculated by unconditional multiple logistic regression, stratified by menopausal status (a surrogate of endogenous female sex hormone level and age) and type of relative affected with the disease. Further subgroup analysis by tumor type according to ER status was investigated. Altogether 52 (6.96%) breast cancer cases and 23 (2.95%) controls was found that the patients' one or more first-degree relatives had a history of breast cancer, showing an adjusted odds ratio (OR) of 2.41 (95%CI: 1.45-4.02). An excess risk of breast cancer was restricted to the ER+ tumor (OR = 2.43, 95% CI: 1.38-4.28), with a relatively higher risk associated with an affected mother (OR = 3.97, 95%CI: 1.46-10.79) than an affected sister (OR = 2.06, 95%CI: 1.07-3.97), while the relative risk was more prominent in the subgroup of pre-menopausal women. Compared with the breast cancer overall, the familial risks to the ER+ tumor increased progressively with the number of affected first-degree relatives. This study provides new insights on a relationship between family breast cancer history, menopausal status, and the ER+ breast cancer. A separate risk prediction model for ER+ tumor in Asian population is desired.
    PLoS ONE 03/2015; 10(3):e0120741. DOI:10.1371/journal.pone.0120741 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When treated with 17β-estradiol, female ACI rats (Rattus norvegicus) rapidly develop mammary cancers that share multiple phenotypes with luminal breast cancers. Seven distinct quantitative trait loci that harbor genetic determinants of susceptibility to 17β-estradiol-induced mammary cancer have been mapped in reciprocal intercrosses between susceptible ACI rats and resistant Brown Norway (BN) rats. A panel of unique congenic rat strains has now been generated and characterized to confirm the existence of these quantitative trait loci, designated Emca3 through Emca9, and to quantify their individual effects on susceptibility to 17β-estradiol-induced mammary cancer. Each congenic strain carries BN alleles spanning an individual Emca locus, introgressed onto the ACI genetic background. Data presented herein indicate that BN alleles at Emca3, Emca4, Emca5, Emca6 and Emca9 reduce susceptibility to 17β-estradiol-induced mammary cancer, whereas BN alleles at Emca7 increase susceptibility, thereby confirming the previous interval mapping data. All of these Emca loci are orthologous to regions of the human genome that have been demonstrated in genome wide association studies to harbor genetic variants that influence breast cancer risk. Moreover, four of the Emca loci are orthologous to loci in humans that have been associated with mammographic breast density, a biomarker of breast cancer risk. This study further establishes the relevance of the ACI and derived congenic rat models of 17β-estradiol-induced mammary cancer for defining the genetic bases of breast cancer susceptibility and elucidating the mechanisms through which 17β-estradiol contributes to breast cancer development.
    G3-Genes Genomes Genetics 05/2014; DOI:10.1534/g3.114.011163 · 2.51 Impact Factor