Article

Light-induced depolarization of neurons using a modified Shaker K(+) channel and a molecular photoswitch.

Department of Molecular and Cell Biology, University of California, Berkley, CA 94720, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 12/2006; 96(5):2792-6. DOI: 10.1152/jn.00318.2006
Source: PubMed

ABSTRACT To trigger action potentials in neurons, most investigators use electrical or chemical stimulation. Here we describe an optical stimulation method based on semi-synthetic light-activated ion channels. These SPARK (synthetic photoisomerizable azobenzene-regulated K(+)) channels consist of a synthetic azobenzene-containing photoswitch and a genetically modified Shaker K(+) channel protein. SPARK channels with a wild-type selectivity filter elicit hyperpolarization and suppress action potential firing when activated by 390 nm light. A mutation in the pore converts the K(+)-selective Shaker channel into a nonselective cation channel. Activation of this modified channel with the same wavelength of light elicits depolarization of the membrane potential. Expression of these depolarizing SPARK channels in neurons allows light to rapidly and reversibly trigger action potential firing. Hence, hyper- and depolarizing SPARK channels provide a means for eliciting opposite effects on neurons in response to the same light stimulus.

Download full-text

Full-text

Available from: Matthew R Banghart, Apr 02, 2014
0 Followers
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optogenetic tools were originally designed to target specific neurons for remote control of their activity by light and have largely been built around opsin-based channels and pumps. These naturally photosensitive opsins are microbial in origin and are unable to mimic the properties of native neuronal receptors and channels. Over the last 8 years, photoswitchable tethered ligands (PTLs) have enabled fast and reversible control of mammalian ion channels, allowing optical control of neuronal activity. One such PTL, maleimide-azobenzene-quaternary ammonium (MAQ), contains a maleimide (M) to tether the molecule to a genetically engineered cysteine, a photoisomerizable azobenzene (A) linker and a pore-blocking quaternary ammonium group (Q). MAQ was originally used to photocontrol SPARK, an engineered light-gated potassium channel derived from Shaker. Potassium channel photoblock by MAQ has recently been extended to a diverse set of mammalian potassium channels including channels in the voltage-gated and K2P families. Photoswitchable potassium channels, which maintain native properties, pave the way for the optical control of specific aspects of neuronal function and for high precision probing of a specific channel's physiological functions. To extend optical control to natively expressed channels, without overexpression, one possibility is to develop a knock-in mouse in which the wild-type channel gene is replaced by its light-gated version. Alternatively, the recently developed photoswitchable conditional subunit technique provides photocontrol of the channel of interest by molecular replacement of wild-type complexes. Finally, photochromic ligands also allow photocontrol of potassium channels without genetic manipulation using soluble compounds. In this review we discuss different techniques for optical control of native potassium channels and their associated advantages and disadvantages.
    Frontiers in Molecular Neuroscience 04/2013; 6:6. DOI:10.3389/fnmol.2013.00006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fundamental questions that neuroscientists have previously approached with classical biochemical and electrophysiological techniques can now be addressed using optogenetics. The term optogenetics reflects the key program of this emerging field, namely, combining optical and genetic techniques. With the already impressively successful application of light-driven actuator proteins such as microbial opsins to interact with intact neural circuits, optogenetics rose to a key technology over the past few years. While spearheaded by tools to control membrane voltage, the more general concept of optogenetics includes the use of a variety of genetically encoded probes for physiological parameters ranging from membrane voltage and calcium concentration to metabolism. Here, we provide a comprehensive overview of the state of the art in this rapidly growing discipline and attempt to sketch some of its future prospects and challenges.
    Progress in brain research 01/2012; 196:1-28. DOI:10.1016/B978-0-444-59426-6.00001-X · 5.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Considerable effort has been directed toward the development of methods to selectively activate specific subtypes of neurons. Focus has been placed on the heterologous expression of proteins that are capable of exciting neurons in which they are expressed. Here we describe the heterologous expression of the invertebrate FMRFamide (H-phenylalanine-methionine-arginine-phenylalanine-NH2) -gated sodium channel from Helix aspersa (HaFaNaC) in hippocampal slice cultures. HaFaNaC was co-expressed with a fluorescent protein (green fluorescent protein (GFP), red fluorescent protein from Discosoma sp (dsRed) or mutated form of red fluorescent protein from Discosoma sp (tdTomato)) in CA3 pyramidal neurons of rat hippocampal slice cultures using single cell electroporation. Pressure application of the agonist FMRFamide to HaFaNaC-expressing neuronal somata produced large prolonged depolarizations and bursts of action potentials (APs). FMRFamide responses were inhibited by amiloride (100 microM). In contrast, pressure application of FMRFamide to the axons of neurons expressing HaFaNaC produced no response. Fusion of GFP to the N-terminus of HaFaNaC showed that GFP-HaFaNaC was absent from axons. Bath application of FMRFamide produced persistent AP firing in HaFaNaC-expressing neurons. This FMRFamide-induced increase in the frequency of APs was dose-dependent. The concentrations of FMRFamide required to activate HaFaNaC-expressing neurons were below that required to activate the homologous acid sensing ion channel normally found in mammalian neurons. Furthermore, the mammalian neuropeptides neuropeptide FF and RFamide-related peptide-1, which have amidated RF C-termini, did not affect HaFaNaC-expressing neurons. Antagonists of NPFF receptors (BIBP3226) also had no effect on HaFaNaC. Therefore, we suggest that heterologous-expression of HaFaNaC in mammalian neurons could be a useful method to selectively and persistently excite specific subtypes of neurons in intact nervous tissue.
    Neuroscience 07/2008; 155(2):374-86. DOI:10.1016/j.neuroscience.2008.05.052 · 3.33 Impact Factor