Article

Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain

Harvard University, Cambridge, Massachusetts, United States
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 08/2006; 26(30):7907-18. DOI: 10.1523/JNEUROSCI.1299-06.2006
Source: PubMed

ABSTRACT Glial fibrillary acidic protein (GFAP)-positive astrocytes (type B cells) in the subventricular zone (SVZ) generate large numbers of new neurons in the adult brain. SVZ stem cells can also generate oligodendrocytes in vitro, but it is not known whether these adult primary progenitors generate oligodendrocytes in vivo. Myelin repair and oligodendrocyte formation in the adult brain is instead associated with glial-restricted progenitors cells, known as oligodendrocyte progenitor cells (OPCs). Here we show that type B cells also generate a small number of nonmyelinating NG2-positive OPCs and mature myelinating oligodendrocytes. Some type B cells and a small subpopulation of actively dividing type C (transit-amplifying) cells expressed oligodendrocyte lineage transcription factor 2 (Olig2), suggesting that oligodendrocyte differentiation in the SVZ begins early in the lineage. Olig2-positive, polysialylated neural cell adhesion molecule-positive, PDGF receptor alpha-positive, and beta-tubulin-negative cells originating in the SVZ migrated into corpus callosum, striatum, and fimbria fornix to differentiate into the NG2-positive nonmyelinating and mature myelinating oligodendrocytes. Furthermore, primary clonal cultures of type B cells gave rise to oligodendrocytes alone or oligodendrocytes and neurons. Importantly, the number of oligodendrocytes derived from type B cells in vivo increased fourfold after a demyelinating lesion in corpus callosum, indicating that SVZ astrocytes participate in myelin repair in the adult brain. Our work identifies SVZ type B cells as progenitors of oligodendrocytes in normal and injured adult brain.

Full-text

Available from: Oscar Gonzalez-Perez, May 24, 2015
0 Followers
 · 
137 Views
  • Source
  • Source
    Molecular Considerations and Evolving Surgical Management Issues in the Treatment of Patients with a Brain Tumor, Edited by Lee Roy Morgan, 04/2015: chapter Tumor microenvironment: perivascular and perinecroticniches in gliomas: pages 49-82; INTECH.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current knowledge in neuroscience indicates that neural tissue has two major cell populations: neurons and glia (term derived from the Greek word for glue). Neuronal population is characterized by the capacity to produce action potentials, whereas glial cells are typically identified as the subordinate cell population of neurons. To date, this point of view has changed dramatically and growing evidence indicates that glial cells play a crucial role in normal mental functions and the pathogenesis of neurological diseases. Classically, glial cells include four major populations clearly discernible in the adult brain: astrocytes, oligodendrocytes, microglia cells and NG2 glia. Astrocytes, also referred as to astroglia, are by far the most abundant cell lineage in the adult brain. These cells are in close contact with several tissue components of the brain parenchyma including neurons, vasculature, extracellular matrix and other glial populations. Hence, the number and strategic position of astrocytes provide them with exceptional capacity for modulating multiple functions in the neural tissue.