Automated MEMS-based Drosophila embryo injection system for high-throughput RNAi screens

E.L. Ginzton Lab, Stanford University, Stanford, CA 94305-4085, USA.
Lab on a Chip (Impact Factor: 5.75). 09/2006; 6(8):1012-9. DOI: 10.1039/b600238b
Source: PubMed

ABSTRACT We have developed an automated system based on microelectromechanical systems (MEMS) injectors for reliable mass-injection of Drosophila embryos. Targeted applications are high-throughput RNA interference (RNAi) screens. Our injection needles are made of silicon nitride. The liquid to be injected is stored in an integrated 500 nl reservoir, and an externally applied air pressure pulse precisely controls the injected volume. A steady-state water flow rate per applied pressure of 1.2 nl s(-1) bar(-1) was measured for a needle with channel width, height and length of 6.1 microm, 2.3 microm and 350 microm, respectively. A typical volume of 60 pl per embryo can be reliably and rapidly delivered within tens of milliseconds. Theoretical predictions of flow rates match measured values within +/-10%. Embryos are attached to a glass slide surface and covered with oil. Packages with the injector chip and the embryo slide are mounted on motorized xyz-stages. Two cameras allow the user to quickly align the needle tip to alignment marks on the glass slide. Our system then automatically screens the glass slide for embryos and reliably detects and injects more than 98% of all embryos. Survival rates after deionized (DI) water injection of 80% and higher were achieved. A first RNAi experiment was successfully performed with double-stranded RNA (dsRNA) corresponding to the segment polarity gene armadillo at a concentration of 0.01 microM. Almost 80% of the injected embryos expressed an expected strong loss-of-function phenotype. Our system can replace current manual injection technologies and will support systematic identification of Drosophila gene functions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carbon nanopipette (CNP) is comprised of a pulled-glass pipette terminating with a nanoscale (tens to hundreds of nm) diameter carbon pipe. The entire inner glass surface of the CNP is coated with a carbon film, providing an electrically conductive path from the carbon tip to the distal, macroscopic end of the pipette. The CNP can double as a nanoelectrode, enabling electrical measurements through its carbon lining, and as a nanoinjector, facilitating reagent injection through its hollow bore. With the aid of a lock-in amplifier, we measured, in real time and with millisecond resolution, variations in impedance and interfacial capacitance as the CNP penetrated into the cytoplasm and nucleus of adherent human osteosarcoma (U20S) cells during microinjection. The capacitance change associated with nucleus penetration was, on average, 1.5 times greater than the one associated with cell membrane penetration. The experimental data was compared and favorably agreed with theoretical predictions based on a simple electrical network model. As a proof of concept, the cytoplasm and nucleus were transfected with fluorescent tRNA, enabling real-time monitoring of tRNA trafficking across the nuclear membrane. The CNP provides a robust and reliable means to detect cell and nucleus penetration, and trigger injection, thereby enabling the automation of cell injection.
    Nanotechnology 05/2014; 25(24):245102. DOI:10.1088/0957-4484/25/24/245102 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a surface-micromachined microelectromechanical system nanoinjector designed to inject DNA into mouse zygotes which are ≈90 μm in diameter. The proposed injection method requires that an electrically charged, DNA coated lance be inserted into the mouse zygote. The nanoinjector's principal design requirements are (1) it must penetrate the lance into the mouse zygote without tearing the cell membranes and (2) maintain electrical connectivity between the lance and a stationary bond pad. These requirements are satisfied through a two-phase, self-reconfiguring metamorphic mechanism. In the first motion subphase a change-point six-bar mechanism elevates the lance to ≈45 μm above the substrate. In the second motion subphase, a compliant folded-beam suspension allows the lance to translate in-plane at a constant height as it penetrates the cell membranes. The viability of embryos following nanoinjection is presented as a metric for quantifying how well the nanoinjector mechanism fulfills its design requirements of penetrating the zygote without causing membrane damage. Viability studies of nearly 3000 nanoinjections resulted in 71.9% of nanoinjected zygotes progressing to the two-cell stage compared to 79.6% of untreated embryos.
    Review of Scientific Instruments 05/2014; 85(5):055005-055005-10. DOI:10.1063/1.4872077 · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two microfluidic devices (Pneumatic chip and FlexiChip) have been developed for immobilization and live-intact fluorescent functional imaging of Drosophila larva’s Central Nervous System (CNS) in response to controlled acoustic stimulation. The pneumatic chip is suited for automated loading/unloading and allows high throughput operation for studies with large number of larvae while the FlexiChip provides a simple and quick manual option for animal loading and is suited for smaller studies. Both chips were capable of significantly reducing the endogenous CNS movement while still allowing the study of sound-stimulated CNS activities of Drosophila 3rd instar larvae using genetically encoded calcium indicator GCaMP5. Temporal effects of sound frequency (50-5000Hz) and intensity (95-115dB) on CNS activities were investigated and peak neuronal response of 200 Hz was identified. Our lab-on-chip devices will not only aid further study of Drosophila larva´s auditory responses but can be also adopted for functional imaging of CNS activities in response to other sensory cues. Auditory stimuli and the corresponding response of the CNS can potentially be used as a tool to study the effect of chemicals on the neurophysiology of this model organism.
    Lab on a Chip 12/2014; 15(4). DOI:10.1039/C4LC01245C · 5.75 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014