Immunohistochemical localization of a GHB receptor-like protein isolated from rat brain.

Institut de Chimie Biologique and INSERM U-575, Faculty of Medicine, 67085 Strasbourg, France.
The Journal of Comparative Neurology (Impact Factor: 3.51). 11/2006; 498(4):508-24. DOI: 10.1002/cne.21072
Source: PubMed

ABSTRACT Gamma-hydroxybutyrate (GHB) is a substance derived from the metabolism of GABA and is heterogeneously distributed in various regions of the brain. This compound possesses a neuromodulatory role on several types of synapses, particularly those using GABA as a neurotransmitter. At physiological concentrations, this effect of GHB is mediated via specific receptors that induce neuronal hyperpolarization and bind radioactive GHB with a specific distribution, ontogenesis, kinetics, and pharmacology. A membrane protein that possesses six to seven transmembrane domains and which binds and is activated by micromolar amounts of GHB was recently cloned from rat brain hippocampus. In order to study the regional and cellular distribution of this receptor in rat brain, we selected several specific peptides belonging to the extracellular domains of the receptor to be used as specific immunogens to raise polyclonal antibodies in the rabbit. Among the antisera obtained, one of them gave particularly good results in terms of specificity and reactivity at high dilution. Immunohistochemical analyses, both at the confocal and electron microscopic level, showed receptor protein distribution closely resembling the distribution of GHB high-affinity binding sites, except for cerebellum, where GHB receptor(s) of lower affinity exist(s). In all regions studied the GHB receptor-like protein labeling appears to be distributed specifically in neurons and not in glial cells. At the cellular level the antibody specifically labels dendrites, and no immunoreactivity was detected in presynaptic endings or in axons. Accordingly, electron microscopy reveals strong labeling of postsynaptic densities and of neuronal cytosol.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to analyze the connection between alcohol dependence and criminal behavior by an integrated genetic-environmental approach. The research, structured as a case-control study, examined 186 alcohol-dependent males; group 1 (N = 47 convicted subjects) was compared with group 2 (N = 139 no previous criminal records). Genetic results were innovative, highlighting differences in genotype distribution (p = 0.0067) in group 1 for single-nucleotide polymorphism rs 3780428, located in the intronic region of subunit 2 of the GABA B receptor gene (GABBR2). Some environmental factors (e.g., grade repetition) were associated with criminal behavior; others (e.g., attendance at Alcoholics Anonymous) were inversely related to convictions. The concomitant presence of the genetic and environmental factors found to be associated with the condition of alcohol-dependent inmate showed a 4-fold increase in the risk of antisocial behavior. The results need to be replicated on a larger population to develop new preventive and therapeutic proposals.
    Journal of Forensic Sciences 07/2013; · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: γ-Hydroxybutyrate (GHB) is a natural brain neuromodulator that has its own enzymatic machinery for synthesis and degradation, release, and transport systems and several receptors that belong to the G protein-coupled receptor (GPCR) family. Targeting of this system with exogenous GHB is used in therapy to induce sleep and anesthesia and to reduce alcohol withdrawal syndrome. GHB is also popular as a recreational drug for its anxiolytic and mild euphoric effects. However, in both cases, GHB must be administered at high doses in order to maintain GHB concentrations in brain of ∼800-1,000 μM. These high concentrations are thought to be necessary for interactions with low-affinity sites on GABA(B) receptor, but the molecular targets and cellular mechanisms modulated by GHB remain poorly characterized. Therefore, to provide new insights into the elucidation of GHB mechanisms of action and open new tracks for future investigations, we explored changes of GHB-induced transcriptomes in rat hippocampus and prefrontal cortex by using DNA microarray studies. We demonstrate that a single acute anesthetic dose of 1 g/kg GHB alters a large number of genes, 121 in hippocampus and 53 in prefrontal cortex; 16 genes were modified simultaneously in both brain regions. In terms of molecular functions, the majority of modified genes coded for proteins or nucleotide binding sites. In terms of Gene Ontology (GO) functional categories, the largest groups were involved in metabolic processing for hippocampal genes and in biological regulation for prefrontal cortex genes. The majority of genes modified in both structures were implicated in cell communication processes. Western blot and immunohistochemical studies carried out on eight selected proteins confirmed the microarray findings.
    Physiological Genomics 01/2010; 41(2):146-60. · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OUR CASE DESCRIBES CLINICAL FEATURES OF TWO FAMILIES DEFINED BY JOINT PHENOTYPES: sodium oxybate intolerance and elevated serum acylcarnitines. Oxybate intolerance variably presents as either cervical dystonia or sleep-related eating disorder. Our objective is to identify biological markers which predict a poor response to sodium oxybate as a treatment for disturbed sleep. Familial inheritance pattern, genotype analysis, multiorgan system involvement, and response to treatment suggest the presence of a secondary cause of fatty oxidation defect, i.e., mitochondrial disorder. Our case report supports the possible conclusion that variance in human mitochondrial metabolism may affect sodium oxybate tolerability. CITATION: Berner J. Sodium oxybate intolerance associated with familial serum acylcarnitine elevation. J Clin Sleep Med 2013;9(1):71-72.
    Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine 01/2013; 9(1):71-2. · 2.93 Impact Factor