Article

Skin gene therapy for acquired and inherited disorders.

Regenerative Medicine Unit and Cutaneous Diseases Modeling Unit, Epithelial Biomedicine Division, Basic Research Department, CIEMAT, Madrid, Spain.
Histology and histopathology (Impact Factor: 2.24). 12/2006; 21(11):1233-47.
Source: PubMed

ABSTRACT The rapid advances associated with the Human Genome Project combined with the development of proteomics technology set the bases to face the challenge of human gene therapy. Different strategies must be evaluated based on the genetic defect to be corrected. Therefore, the re-expression of the normal counterpart should be sufficient to reverse phenotype in single-gene inherited disorders. A growing number of candidate diseases are being evaluated since the ADA deficiency was selected for the first approved human gene therapy trial (Blaese et al., 1995). To cite some of them: sickle cell anemia, hemophilia, inherited immune deficiencies, hyper-cholesterolemia and cystic fibrosis. The approach does not seem to be so straightforward when a polygenic disorder is going to be treated. Many human traits like diabetes, hypertension, inflammatory diseases and cancer, appear to be due to the combined action of several genes and environment. For instance, several wizard gene therapy strategies have recently been proposed for cancer treatment, including the stimulation of the immune system of the patient (Xue et al., 2005), the targeting of particular signalling pathways to selectively kill cancer cells (Westphal and Melchner, 2002) and the modulation of the interactions with the stroma and the vasculature (Liotta, 2001; Liotta and Kohn, 2001).

0 Followers
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review will focus on the elements of the skin’s immune system, immune cells and/or non-immune cells that support immune mechanisms, molecules with immune origin and/or immune functions that are involved in skin carcinogenesis. All these immune elements are compulsory in the development of skin tumors and/or sustainability of the neoplastic process. In this light, recent data gathered in this review will acknowledge all immune elements that contribute to skin tumorigenesis; moreover, they can serve as immune biomarkers. These immune markers can contribute to the diagnostic improvement, prognosis forecast, therapy monitoring, and even personalized therapeutical approach in skin cancer. Immune processes that sustain tumorigenesis in non-melanoma and melanoma skin cancers are described in the framework of recent data.
    Current Proteomics 10/2013; 10(3):202-217. DOI:10.2174/1570164611310030003 · 0.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regenerative Medicine is an emerging field that combines basic research and clinical observations in order to identify the elements required to replace damaged tissues and organs in vivo and to stimulate the body's intrinsic regenerative capacity. Great benefits are expected in this field as researchers take advantage of the potential regenerative properties of both embryonic and adult stem cells, and more recently, of induced pluripotent stem cells. Bioengineered skin emerged mainly in response to a critical need for early permanent coverage of extensive burns. Later this technology was also applied to the treatment of chronic ulcers. Our group has established a humanized mouse model of skin grafting that involves the use of bioengineered human skin in immunodeficient mice. This model is suitable for the study of physiologic and pathologic cutaneous processes and the evaluation of treatment strategies for skin diseases, including protocols for gene and cell therapy and tissue engineering.
    Actas Dermo-Sifiliográficas 01/2012; DOI:10.1016/j.ad.2011.03.006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regenerative Medicine is an emerging field that combines basic research and clinical observations in order to identify the elements required to replace damaged tissues and organs in vivo and to stimulate the body's intrinsic regenerative capacity. Great benefits are expected in this field as researchers take advantage of the potential regenerative properties of both embryonic and adult stem cells, and more recently, of induced pluripotent stem cells. Bioengineered skin emerged mainly in response to a critical need for early permanent coverage of extensive burns. Later this technology was also applied to the treatment of chronic ulcers. Our group has established a humanized mouse model of skin grafting that involves the use of bioengineered human skin in immunodeficient mice. This model is suitable for the study of physiologic and pathologic cutaneous processes and the evaluation of treatment strategies for skin diseases, including protocols for gene and cell therapy and tissue engineering.
    Actas Dermo-Sifiliográficas 01/2012; 103(1):5-11. DOI:10.1016/j.adengl.2011.03.016

Preview

Download
39 Downloads
Available from