Swerdlow RH. Is aging part of Alzheimer's disease, or is Alzheimer's disease part of aging? Neurobiol Aging 28: 1465-1480

Department of Neurology, University of Virginia Health System, McKim Hall, 1 Hospital Drive, P.O. Box 800394, Charlottesville, VA 22908, United States.
Neurobiology of aging (Impact Factor: 5.01). 11/2007; 28(10):1465-80. DOI: 10.1016/j.neurobiolaging.2006.06.021
Source: PubMed


For 70 years after Alois Alzheimer described a disorder of tangle-and-plaque dementia, Alzheimer's disease was a condition of the relatively young. Definitions of Alzheimer's disease (AD) have, however, changed over the past 30 years and under the revised view AD has truly become an age-related disease. Most now diagnosed with AD are elderly and would not have been diagnosed with AD as originally conceived. Accordingly, younger patients that qualify for a diagnosis of AD under both original and current Alzheimer's disease constructs now represent an exceptionally small percentage of the diagnosed population. The question of whether pathogenesis of the "early" and "late" onset cases is similar enough to qualify as a single disease was previously raised although not conclusively settled. Interestingly, debate on this issue has not kept pace with advancing knowledge about the molecular, biochemical and clinical underpinnings of tangle-and-plaque dementias. Since the question of whether both forms of AD share a common pathogenesis could profoundly impact diagnostic and treatment development efforts, it seems worthwhile to revisit this debate.

11 Reads
  • Source
    • "In this context, we and a growing number of other investigators have started to think that sAD should be understood from a new perspective, i.e., aging (Chen, 1998; Swerdlow, 2007; Yankner et al., 2008; Castellani et al., 2009; Herrup, 2010; Sperling et al., 2011; Korczyn, 2012). From this ground, we have proposed a new hypothesis for the natural history of sAD (Figure 1). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sporadic Alzheimers disease (sAD) has not been explained by any current theories, so new hypotheses are urgently needed. We proposed that energy and Ca2+ signaling deficits are perhaps the earliest modifiable defects in brain aging underlying memory decline and tau deposits (by means of inactivating Ca2+-dependent protease calpain). Consistent with this hypothesis, we now notice that at least eight other known calpain substrates have also been reported to accumulate in aging and AD. Thus, protein accumulation or aggregation is not a pathogenic event, but occurs naturally and selectively to a peculiar family of proteins, and is best explained by calpain inactivation. Why are only calpain substrates accumulated and how can they stay for decades in the brain without being attacked by many other non-specific proteases there? We believe that these long-lasting puzzles can be explained by calpains unique properties, especially its unusual specificity and exclusivity in substrate recognition, which can protect the substrates from other proteases attacks after calpain inactivation. Interestingly, our model, in essence, may also explain tau phosphorylation and the formation of amyloid plaques. Our studies suggest that a-secretase is an energy-/Ca2+-dual dependent protease and is also the primary determinant for A beta levels. Therefore, beta- and gamma-secretases can only play secondary roles and, by biological laws, they are unlikely to be positively identified. This study thus raises serious questions for policymakers and researchers and these questions may help explain why sAD can remain an enigma today.
    Frontiers in Aging Neuroscience 12/2014; 6. DOI:10.3389/fnagi.2014.00329 · 4.00 Impact Factor
  • Source
    • "Alzheimer'sdisease(AD)isthemostcommoncauseof dementiaoccurringinmiddleandlatelife.Populationbased surveysestimatethatADaffects7–10%ofindividuals>65yearsof ageandpossibly50–60%ofpeopleover85yearsofage.ADnow affectsabout2%ofthepopulation,orabout4millionpeopleinthe USAandmorethan35millionpeopleworldwide[75].The prevalenceofADisincreasingproportionallytoincreasedlife expectancyandestimatespredictthattheprevalencewillreach approximatelyover100millionworld-widebymiddleofthis century[75]. Ithasbeenreportedthatmitochondrialabnormalitiescorrelate withdystrophicneurites,thelossofdendriticbranchesandthe pathologicalalterationofthedendriticspinespresentinthebrains ofAlzheimer'sdisease(AD)cases[76].SwerdlowandKhan[77] [78] proposedthemitochondrialcascadehypothesistoexplainlateonset ,sporadicAD,statingthatAbdepositionasplaques, neurofibrillarytangleformationandneurodegenerationare consequenteventsofmitochondrialmalfunction.Thishypothesis emphasizesageingasthemainriskfactorforthedevelopmentof thesporadicformofAD.Inparticularitpostulatesthatthe accumulationofAb42,thetoxicformofAbduetoinappropriate processingofamyloidprecursorproteins,isaconsequenceof ageing[79]ratherthanthecauseoftheevolutionofthe neuropathologyasiswidelyreportedinthecaseoffamilialAD. Ab42canbetransportedtomitochondriawhereitmayadversely interactwithmitochondrialelectrontransportchainproteins, causeanincreaseinROSproduction,promoteexcessaccumulation ofmitochondrialcalciumions,decreasethenumberoffunctionally activemitochondriaand,ultimately,neurondamage[80] [81] [82] [83] [84].In turn,productionofreactiveoxygenspecies(ROS),ATPproduction failure,andpotentialdisruptionofmitochondrialmembranecould causeopeningofmitochondrialpermeabilitytransitionpores, releaseofcytochromec,andinductionofapoptosis[85]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are essential for mammalian and human cell function as they generate ATP via aerobic respiration. The proteins required in the electron transport chain are mainly encoded by the circular mitochondrial genome but other essential mitochondrial proteins such as DNA repair genes, are coded in the nuclear genome and require transport into the mitochondria. In this review we summarize current knowledge on the association of point mutations and deletions in the mitochondrial genome that are detrimental to mitochondrial function and are associated with accelerated ageing and neurological disorders including Alzheimer's, Parkinson's, Huntington's and Amyotrophic lateral sclerosis (ALS). Mutations in the nuclear encoded genes that disrupt mitochondrial functions are also discussed. It is evident that a greater understanding of the causes of mutations that adversely affect mitochondrial metabolism is required to develop preventive measures against accelerated ageing and neurological disorders caused by mitochondrial dysfunction.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 09/2013; 759C(1). DOI:10.1016/j.mrrev.2013.09.001 · 3.68 Impact Factor
    • "It is worthy of note that most anti-amyloid based therapeutic strategies have failed to show clinically relevant results either in improving cognition or in halting the clinical progression of dementia (Cummings 2006) and, finally, cellular and animal models of AD are based largely on genetic mutations associated with familial, earlyonset AD, which accounts for a small proportion of dementia cases. Since late-onset AD represents the vast majority of cases, that it is not determined by a single gene mutation (but rather has a multifactorial nature), and considering that amyloidogenesis in these patients occurs to a lesser extent compared to the early AD, questions have been raised concerning the appropriateness of early-onset AD models to aid understanding of late-onset AD (Swerdlow 2007a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a chronic neurodegenerative disease with well-defined pathophysiological mechanisms, mostly affecting medial temporal lobe and associative neocortical structures. Neuritic plaques and neurofibrillary tangles represent the pathological hallmarks of AD, and are respectively related to the accumulation of the amyloid-beta peptide (Aβ) in brain tissues, and to cytoskeletal changes that arise from the hyperphosphorylation of microtubule-associated Tau protein in neurons. According to the amyloid hypothesis of AD, the overproduction of Aβ is a consequence of the disruption of homeostatic processes that regulate the proteolytic cleavage of the amyloid precursor protein (APP). Genetic, age-related and environmental factors contribute to a metabolic shift favoring the amyloidogenic processing of APP in detriment of the physiological, secretory pathway. Aβ peptides are generated by the successive cleavage of APP by beta-secretase (BACE-1) and gamma-secretase, which has been recently characterized as part of the presenilin complex. Among several beta-amyloid isoforms that bear subtle differences depending on the number of C-terminal amino acids, Aβ (1-42) plays a pivotal role in the pathogenesis of AD. The neurotoxic potential of the Aβ peptide results from its biochemical properties that favor aggregation into insoluble oligomers and protofibrils. These further originate fibrillary Aβ species that accumulate into senile and neuritic plaques. These processes, along with a reduction of Aβ clearance from the brain, leads to the extracellular accumulation of Aβ, and the subsequent activation of neurotoxic cascades that ultimately lead to cytoskeletal changes, neuronal dysfunction and cellular death. Intracerebral amyloidosis develops in AD patients in an age-dependent manner, but recent evidence indicate that it may be observed in some subjects as early as in the third or fourth decades of life, with increasing magnitude in late middle age, and highest estimates in old age. According to recent propositions, three clinical phases of Alzheimer's disease may be defined: (i) pre-symptomatic (or pre-clinical) AD, which may last for several years or decades until the overproduction and accumulation of Aβ in the brain reaches a critical level that triggers the amyloid cascade; (ii) pre-dementia phase of AD (compatible with the definition of progressive, amnestic mild cognitive impairment), in which early-stage pathology is present, ranging from mild neuronal dystrophy to early-stage Braak pathology, and may last for several years according to individual resilience and brain reserve; (iii) clinically defined dementia phase of AD, in which cognitive and functional impairment is severe enough to surmount the dementia threshold; at this stage there is significant accumulation of neuritic plaques and neurofibrillary tangles in affected brain areas, bearing relationship with the magnitude of global impairment. New technologies based on structural and functional neuroimaging, and on the biochemical analysis of cerebrospinal fluid may depict correlates of intracerebral amyloidosis in individuals with mild, pre-dementia symptoms. These methods are commonly referred to as AD-related biomarkers, and the combination of clinical and biological information yields good diagnostic accuracy to identify individuals at high risk of AD. In other words, the characterization of pathogenic Aβ by means of biochemical analysis of biological fluids or by molecular neuroimaging are presented as diagnostic tools to help identify AD cases at the earliest stages of the disease process. The relevance of this early diagnosis of AD relies on the hypothesis that pharmacological interventions with disease-modifying compounds are more likely to produce clinically relevant benefits if started early enough in the continuum towards dementia. Therapies targeting the modification of amyloid-related cascades may be viewed as promising strategies to attenuate or even to prevent dementia. Therefore, the cumulative knowledge on the pathogenesis of AD derived from basic science models will hopefully be translated into clinical practice in the forthcoming years.
    Sub-cellular biochemistry 12/2012; 65(329):352.
Show more