Article

Evidence that mechanisms of fin development evolved in the midline of early vertebrates.

Department of Zoology, University of Florida, PO Box 118525, Gainesville, Florida 32611, USA.
Nature (Impact Factor: 42.35). 09/2006; 442(7106):1033-7. DOI: 10.1038/nature04984
Source: PubMed

ABSTRACT The origin of paired appendages was a major evolutionary innovation for vertebrates, marking the first step towards fin- (and later limb-) driven locomotion. The earliest vertebrate fossils lack paired fins but have well-developed median fins, suggesting that the mechanisms of fin development were assembled first in the midline. Here we show that shark median fin development involves the same genetic programs that operate in paired appendages. Using molecular markers for different cell types, we show that median fins arise predominantly from somitic (paraxial) mesoderm, whereas paired appendages develop from lateral plate mesoderm. Expression of Hoxd and Tbx18 genes, which specify paired limb positions, also delineates the positions of median fins. Proximodistal development of median fins occurs beneath an apical ectodermal ridge, the structure that controls outgrowth of paired appendages. Each median fin bud then acquires an anteroposteriorly-nested pattern of Hoxd expression similar to that which establishes skeletal polarity in limbs. Thus, despite their different embryonic origins, paired and median fins utilize a common suite of developmental mechanisms. We extended our analysis to lampreys, which diverged from the lineage leading to gnathostomes before the origin of paired appendages, and show that their median fins also develop from somites and express orthologous Hox and Tbx genes. Together these results suggest that the molecular mechanisms for fin development originated in somitic mesoderm of early vertebrates, and that the origin of paired appendages was associated with re-deployment of these mechanisms to lateral plate mesoderm.

Download full-text

Full-text

Available from: Renata Freitas, Jul 25, 2014
1 Follower
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By examining development at the level of tissues and processes, rather than focusing on gene expression, we have formulated a general hypothesis to explain the dorso-ventral and anterior-posterior placement of paired appendage initiation sites in vertebrates. According to our model, the number and position of paired appendages are due to a commonality of embryonic tissue environments determined by the global interactions involving the two separated layers (somatic and visceral) of lateral plate mesoderm along the dorso-ventral and anterior-posterior axes of the embryo. We identify this distribution of developmental conditions, as modulated by the separation/contact of the two LPM layers and their interactions with somitic mesoderm, ectoderm, and endoderm as a dynamic developmental entity which we have termed the lateral mesodermal divide (LMD). Where the divide results in a certain tissue environment, fin bud initiation can occur. According to our hypothesis, the influence of the developing gut suppresses limb initiation along the midgut region and the ventral body wall owing to an "endodermal predominance." From an evolutionary perspective, the lack of gut regionalization in agnathans reflects the ancestral absence of these conditions, and the elaboration of the gut together with the concomitant changes to the LMD in the gnathostomes could have led to the origin of paired fins.
    Evolution & Development 01/2014; 16(1):38-48. DOI:10.1111/ede.12061 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.
    Developmental Biology 02/2013; 377(2):428-448. DOI:10.1016/j.ydbio.2013.02.022 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposon elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators.
    Seminars in Cell and Developmental Biology 01/2013; 24(2). DOI:10.1016/j.semcdb.2012.12.008 · 5.97 Impact Factor