Article

Ultra-rapid preparation of total genomic DNA from isolates of yeast and mould using Whatman FTA filter paper technology - a reusable DNA archiving system.

Mycology Reference Laboratory, Health Protection Agency, South-West Regional Laboratory, Kingsdown, Bristol, UK.
Medical Mycology (Impact Factor: 1.98). 09/2006; 44(5):389-98. DOI: 10.1080/13693780600564613
Source: PubMed

ABSTRACT Conventional methods for purifying PCR-grade fungal genomic DNA typically require cell disruption (either physical or enzymatic) coupled with laborious organic extraction and precipitation stages, or expensive column-based technologies. Here we present an easy and extremely rapid method of preparing yeast and mould genomic DNAs from living cultures using Whatman FTA filter matrix technology. Aqueous suspensions of yeast cells or hyphal fragments and conidia (in the case of moulds) are applied directly (or after freeze-thawing) to dry FTA filters. Inoculated filters are then subjected to brief microwave treatment, to dry the filters and inactivate the organisms. Filter punches are removed, washed rapidly, dried and placed directly into PCR reactions. We show that this procedure inactivated all of the 38 yeast and 75 mould species tested, and generated PCR-grade DNA preparations in around 15 minutes. A total of 218 out of 226 fungal isolates tested liberated amplifiable DNA after application to FTA filters. Detection limits with yeast cultures were approximately 10 colony-forming units per punch. Moreover, we demonstrate that filter punches can be recovered after PCR, washed and used in fresh PCR reactions without detectable cross-contamination. Whatman FTA technology thus represents a cheap, ultra-rapid method of fungal genomic DNA preparation, and also potentially represents a powerful fungal DNA archiving and storage system.

0 Bookmarks
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this work was to study a rapid yeast DNA extraction by boiling and freeze-thawing processes without using chemical reagents or any purification procedures, to obtain a high grade PCR-product. A specific DNA fragment of the 18S region of Dekkera bruxellensis and Saccharomyces cerevisiae was chosen. The described boiling and freeze-thawing protocols generated the PCR-grade product preparations and could be used to process many samples. The amplification of the fragments could be observed after 30 and 35 cycles. These processes of extraction without using any kind of chemical reagents, especial water, and purification procedures proved to be efficient, reproducible, simple, fast, and inexpensive.
    Brazilian Archives of Biology and Technology 04/2012; 55(2):319-327. · 0.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compared pyrosequencing technology with the PCR-ITS-RFLP analysis of yeast isolates and denaturing gradient gel electrophoresis (DGGE). These methods gave divergent findings for the yeast population. DGGE was unsuitable for the quantification of biodiversity and its use for species detection was limited by the initial abundance of each species. The isolates identified by PCR-ITS-RFLP were not fully representative of the true population. For population dynamics, high-throughput sequencing technology yielded results differing in some respects from those obtained with other approaches. This study demonstrates that 454 pyrosequencing of amplicons is more relevant than other methods for studying the yeast community on grapes and during alcoholic fermentation. Indeed, this high-throughput sequencing method detected larger numbers of species on grapes and identified species present during alcoholic fermentation that were undetectable with the other techniques.
    Journal of Industrial Microbiology 03/2014; · 1.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate identification of fungal pathogens using a sequence-based approach requires an extraction method that yields template DNA pure enough for polymerase chain reaction (PCR) or other types of amplification. Therefore, the objective of this study was to develop and standardise a rapid, inexpensive DNA extraction protocol applicable to the major fungal phyla, which would yield sufficient template DNA pure enough for PCR and sequencing. A total of 519 clinical and culture collection strains, comprised of both yeast and filamentous fungi, were prepared using our extraction method to determine its applicability for PCR, which targeted the ITS and D1/D2 regions in a single PCR amplicon. All templates were successfully amplified and found to yield the correct strain identification when sequenced. This protocol could be completed in approximately 30 min and utilised a combination of physical and chemical extraction methods but did not require organic solvents nor ethanol precipitation. The method reduces the number of tube manipulations and yielded suitable template DNA for PCR amplification from all phyla that were tested.
    Mycoses 05/2014; · 1.28 Impact Factor

Full-text

Download
19 Downloads
Available from
Jul 31, 2014