Lessons learned from Action Schools! BC - An 'active school' model to promote physical activity in elementary schools

School of Physical Education, University of Victoria, PO Box 3015, STN CSC, Victoria, BC, Canada V8W 1L8.
Journal of Science and Medicine in Sport (Impact Factor: 3.08). 11/2006; 9(5):413-23. DOI: 10.1016/j.jsams.2006.06.013
Source: PubMed

ABSTRACT The 'active school' model offers promise for promoting school-based physical activity (PA); however, few intervention trials have evaluated its effectiveness. Thus, our purpose was to: (1) describe Action Schools! BC (AS! BC) and its implementation (fidelity and feasibility) and (2) evaluate the impact of AS! BC on school provision of PA. Ten elementary schools were randomly assigned to one of the three conditions: Usual Practice (UP, three schools), Liaison (LS, four schools) or Champion (CS, three schools). Teachers in LS and CS schools received AS! BC training and resources but differed on the level of facilitation provided. UP schools continued with regular PA. Delivery of PA during the 11-month intervention was assessed with weekly Activity Logs and intervention fidelity and feasibility were assessed using Action Plans, workshop evaluations, teacher surveys and focus groups with administrators, teachers, parents and students. Physical activity delivered was significantly greater in LS (+67.4 min/week; 95% CI: 18.7-116.1) and CS (+55.2 min/week; 95% CI: 26.4-83.9) schools than UP schools. Analysis of Action Plans and Activity Logs showed fidelity to the model and moderate levels of compliance (75%). Teachers were highly satisfied with training and support. Benefits of AS! BC included positive changes in the children and school climate, including provision of resources, improved communication and program flexibility. These results support the use of the 'active school' model to positively alter the school environment. The AS! BC model was effective, providing more opportunities for "more children to be more active more often" and as such has the potential to provide health benefits to elementary school children.

Download full-text


Available from: Heather M Macdonald, Apr 22, 2015
1 Follower
  • Source
    • "On the other hand, a body mass-based exercise such as a jump and squat can be performed without space or equipment concerns, and may not be too time demanding with large populations. Mackay and colleagues (Macdonald et al., 2008; MacKelvie et al., 2003; McKay et al., 2005; Naylor et al., 2006) have demonstrated that a 10-to 12-min body mass-based jump training improved bone mineral content, body composition and jump performances, and suggested that the body mass-based jump training increases physical activity opportunities throughout the school day (Naylor et al., 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine the effects of body mass-based squat training on body composition, muscular strength and motor fitness in adolescent boys. Ninety-four boys (13.7 ± 0.6 yrs, 1.60 ± 0.09 m, 50.2 ± 9.6 kg) participated in this study and were randomly assigned to training (n = 36) or control (n = 58) groups. The training group completed body mass-based squat exercise training (100 reps/day, 45 sessions) for 8 weeks. Body composition and muscle thickness at the thigh anterior were determined by a bioelectrical impedance analyzer and ultrasound apparatus, respectively. Maximal voluntary knee extension strength and sprint velocity were measured using static myometer and non-motorized treadmill, respectively. Jump height was calculated using flight time during jumping, which was measured by a matswitch system. The 8-wk body mass-based squat training significantly decreased percent body fat (4.2%) and significantly increased the lean body mass (2.7%), muscle thickness (3.2%) and strength of the knee extensors (16.0%), compared to control group. The vertical jump height was also significantly improved by 3.4% through the intervention. The current results indicate that body mass-based squat training for 8 weeks is a feasible and effective method for improving body composition and muscular strength of the knee extensors, and jump performance in adolescent boys. Key pointsAn 8-wk body mass-based squat exercise training decreased percent body fat in adolescent boys.The body mass-based squat exercise training increased muscle size and strength capability of the knee extensors in adolescent boys.The squat exercise training improves vertical jump height in adolescent boys.
    Journal of sports science & medicine 01/2013; 12(1):60-5. · 0.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Implementation fidelity refers to the degree to which an intervention or programme is delivered as intended. Only by understanding and measuring whether an intervention has been implemented with fidelity can researchers and practitioners gain a better understanding of how and why an intervention works, and the extent to which outcomes can be improved. The authors undertook a critical review of existing conceptualisations of implementation fidelity and developed a new conceptual framework for understanding and measuring the process. The resulting theoretical framework requires testing by empirical research. Implementation fidelity is an important source of variation affecting the credibility and utility of research. The conceptual framework presented here offers a means for measuring this variable and understanding its place in the process of intervention implementation.
    Implementation Science 02/2007; 2(1, article 40):40. DOI:10.1186/1748-5908-2-40 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This 16-month randomized, controlled school-based study compared change in tibial bone strength between 281 boys and girls participating in a daily program of physical activity (Action Schools! BC) and 129 same-sex controls. The simple, pragmatic intervention increased distal tibia bone strength in prepubertal boys; it had no effect in early pubertal boys or pre or early pubertal girls. Numerous school-based exercise interventions have proven effective for enhancing BMC, but none have used pQCT to evaluate the effects of increased loading on bone strength during growth. Thus, our aim was to determine whether a daily program of physical activity, Action Schools! BC (AS! BC) would improve tibial bone strength in boys and girls who were pre- (Tanner stage 1) or early pubertal (Tanner stage 2 or 3) at baseline. Ten schools were randomized to intervention (INT, 7 schools) or control (CON, 3 schools). The bone-loading component of AS! BC included a daily jumping program (Bounce at the Bell) plus 15 minutes/day of classroom physical activity in addition to regular physical education. We used pQCT to compare 16-month change in bone strength index (BSI, mg2/mm4) at the distal tibia (8% site) and polar strength strain index (SSIp, mm3) at the tibial midshaft (50% site) in 281 boys and girls participating in AS! BC and 129 same-sex controls. We used a linear mixed effects model to analyze our data. Children were 10.2+/-0.6 years at baseline. Intervention boys tended to have a greater increase in BSI (+774.6 mg2/mm4; 95% CI: 672.7, 876.4) than CON boys (+650.9 mg2/mm4; 95% CI: 496.4, 805.4), but the difference was only significant in prepubertal boys (p=0.03 for group x maturity interaction). Intervention boys also tended to have a greater increase in SSIp (+198.6 mm3; 95% CI: 182.9, 214.3) than CON boys (+177.1 mm3; 95% CI: 153.5, 200.7). Change in BSI and SSIp was similar between CON and INT girls. Our findings suggest that a simple, pragmatic program of daily activity enhances bone strength at the distal tibia in prepubertal boys. The precise exercise prescription needed to elicit a similar response in more mature boys or in girls might be best addressed in a dose-response trial.
    Journal of Bone and Mineral Research 04/2007; 22(3):434-46. DOI:10.1359/jbmr.061205 · 6.59 Impact Factor
Show more