Identification and Herc5-mediated ISGylation of novel target proteins.

Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 10/2006; 348(2):473-7. DOI: 10.1016/j.bbrc.2006.07.076
Source: PubMed

ABSTRACT ISG15, a protein containing two ubiquitin-like domains, is an interferon-stimulated gene product that functions in antiviral response and is conjugated to various cellular proteins (ISGylation) upon interferon stimulation. ISGylation occurs via a pathway similar to the pathway for ubiquitination that requires the sequential action of E1/E2/E3: the E1 (UBE1L), E2 (UbcH8), and E3 (Efp/Herc5) enzymes for ISGylation have been hitherto identified. In this study, we identified six novel candidate target proteins for ISGylation by a proteomic approach. Four candidate target proteins were demonstrated to be ISGylated in UBE1L- and UbcH8-dependent manners, and ISGylation of the respective target proteins was stimulated by Herc5. In addition, Herc5 was capable of binding with the respective target proteins. Thus, these results suggest that Herc5 functions as a general E3 ligase for protein ISGylation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Type I interferons (IFNs) exert their effects through the induction of hundreds of IFN-stimulated genes (ISGs), many of which function by inhibiting viral replication and modulating immune responses. ISG15, a di-ubiquitin-like protein, is one of the most abundantly induced ISGs and is critical for control of certain viral and bacterial infections. Like ubiquitin, ISG15 is covalently conjugated to target proteins. In addition, free unconjugated ISG15 is present both intra- and extracellularly. Although much remains to be learned about conjugated ISG15, even less is known about the 2 free forms of ISG15. This article focuses on the role that ISG15 plays during the host response to pathogen challenge, in particular on the recent observations describing the immunomodulatory properties of free ISG15 and its potential implication in disease pathogenesis.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 09/2013; · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin-like molecule ISG15 (UCRP) and protein modification by ISG15 (ISGylation) are strongly induced by interferon, genotoxic stress, and pathogen infection, suggesting that ISG15 plays an important role in innate immune responses. However, how ISGylation contributes to innate immune responses is not clear. The dsRNA-dependent protein kinase (PKR) inhibits translation by phosphorylating eIF2α to exert its anti-viral effect. ISG15 and PKR are induced by interferon, suggesting that a relationship exists between ISGylation and translational regulation. Here, we report that PKR is ISGylated at lysines 69 and 159. ISG15-modified PKR is active in the absence of virus infection and phosphorylates eIF2α to down-regulate protein translation. The present study describes a novel pathway for the activation of PKR and the regulation of protein translation.
    Journal of Biological Chemistry 12/2012; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein, consisting of two ubiquitin-like domains. ISG15 is synthesized as a precursor in certain mammals and, therefore, needs to be processed to expose the C-terminal glycine residue before conjugation to target proteins. A set of three-step cascade enzymes, an E1 enzyme (UBE1L), an E2 enzyme (UbcH8), and one of several E3 ligases (e.g., EFP and HERC5), catalyzes ISG15 conjugation (ISGylation) of a specific protein. These enzymes are unique among the cascade enzymes for ubiquitin and other ubiquitin-like proteins in that all of them are induced by type I IFNs or other stimuli, such as exposure to viruses and lipopolysaccharide. Mass spectrometric analysis has led to the identification of several hundreds of candidate proteins that can be conjugated by ISG15. Some of them are type I IFN-induced proteins, such as PKR and RIG-I, and some are the key regulators that are involved in IFN signaling, such as JAK1 and STAT1, implicating the role of ISG15 and its conjugates in type I IFN-mediated innate immune responses. However, relatively little is known about the functional significance of ISG15 induction due to the lack of information on the consequences of its conjugation to target proteins. Here, we describe the recent progress made in exploring the biological function of ISG15 and its reversible modification of target proteins and thus in their implication in immune diseases.
    Biochimica et Biophysica Acta 02/2010; 1802(5):485-96. · 4.66 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014