Averaged EMG profiles in jogging and running at different speeds

Center for Human Movement Sciences, University of Groningen, 9700 AD Groningen, The Netherlands.
Gait & Posture (Impact Factor: 2.75). 05/2007; 25(4):604-14. DOI: 10.1016/j.gaitpost.2006.06.013
Source: PubMed


EMGs were collected from 14 muscles with surface electrodes in 10 subjects walking 1.25-2.25 ms(-1) and running 1.25-4.5 ms(-1). The EMGs were rectified, interpolated in 100% of the stride, and averaged over all subjects to give an average profile. In running, these profiles could be decomposed into 10 basic patterns, 8 of which represented only a single burst. Muscles could be divided into a quadriceps, hamstrings, calf and gluteal group, the profiles of which were composed of the same basic patterns. The amplitude of some bursts was constant, but other ones varied with running speed. This speed dependency was generally different between muscles of the same group. Many muscles show a similar profile in running as in walking. The most notable exception is the calf group, which shows activation in early stance (86-125%), together with quadriceps, instead of in late stance (26-55%) as in walking. This is also visible in low-speed running, 'jogging', where stance extends to 46% or 57%, instead of 30-37% as in normal running. Jogging shows some additional differences with normal running, related to this prolonged stance phase.

Download full-text


Available from: At L Hof,
  • Source
    • "Tibialis activity starts at take-off and ends at touchdown, with peak activation before touchdown (Gazendam and Hof, 2007; Müller et al., 2010). On level ground, the movement is periodic and the activity patterns are fairly repetitive (Gazendam and Hof, 2007; Guidetti et al., 1996; Ishikawa et al., 2007; Müller et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: While running on uneven ground, humans are able to negotiate visible but also camouflaged changes in ground level. Previous studies have shown that the leg kinematics before touch down change with ground level. The present study experimentally investigated the contributions of visual perception (visual feedback), proprioceptive feedback and feed-forward patterns to the muscle activity responsible for these adaptations. The activity of three bilateral lower limb muscles (m. gastrocnemius medialis, m. tibialis anterior and m. vastus medialis) of nine healthy subjects was recorded during running across visible (drop of 0, −5 and −10 cm) and camouflaged changes in ground level (drop of 0 and −10 cm). The results reveal that at touchdown with longer flight time, m. tibialis anterior activation decreases and m. vastus medialis activation increases purely by feed-forward driven (flight time-dependent) muscle activation patterns, while m. gastrocnemius medialis activation increase is additionally influenced by visual feedback. Thus, feed-forward driven muscle activation patterns are sufficient to explain the experimentally observed adjustments of the leg at touchdown.
    Journal of Experimental Biology 02/2015; 218(3):451-457. DOI:10.1242/jeb.113688 · 2.90 Impact Factor
  • Source
    • "Muscle activities during running have been examined to study the effects of speed (e.g. Gazendam and Hof, 2007) and gait modifications (e.g. Giandolini et al., 2013) on muscle activity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Running research has focused on reducing injuries by changing running technique. One proposed method is to change from rearfoot striking (RFS) to forefoot striking (FFS) because FFS is thought to be a more natural running pattern that may reduce loading and injury risk. Muscle activity affects loading and influences running patterns; however, the differences in muscle activity between natural FFS runners and natural RFS runners are unknown. The purpose of this study was to measure muscle activity in natural FFS runners and natural RFS runners. We tested the hypotheses that tibialis anterior activity would be significantly lower while activity of the plantarflexors would be significantly greater in FFS runners, compared to RFS runners, during late swing phase and early stance phase. Gait kinematics, ground reaction forces and electromyographic patterns of ten muscles were collected from twelve natural RFS runners and ten natural FFS runners. The root mean square (RMS) of each muscle's activity was calculated during terminal swing phase and early stance phase. We found significantly lower RMS activity in the tibialis anterior in FFS runners during terminal swing phase, compared to RFS runners. In contrast, the medial and lateral gastrocnemius showed significantly greater RMS activity in terminal swing phase in FFS runners. No significant differences were found during early stance phase for the tibialis anterior or the plantarflexors. Recognizing the differences in muscle activity between FFS and RFS runners is an important step toward understanding how foot strike patterns may contribute to different types of injury.
    Journal of Biomechanics 11/2014; 47(15). DOI:10.1016/j.jbiomech.2014.10.015 · 2.75 Impact Factor
  • Source
    • "As hypothesized, we found gluteal muscle activity increased as subjects changed their gait with increasing speeds (walk to run to sprint). This is consistent with previous gait/speed studies that show increased GMAX activity with increasing gait speed (Mann et al., 1986; Kyrolainen et al., 2005; Lieberman et al., 2006; Gazendam and Hof, 2007; Hamner and Delp, 2013). Also as hypothesized, ladder climbing elicited a greater amount of GMAX muscle activity compared with walking . "
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that the uniquely large gluteus maximus (GMAX) muscles were an important adaptation during hominin evolution based on numerous anatomical differences between humans and extant apes. GMAX electromyographic (EMG) signals have been quantified for numerous individual movements, but not across the range of locomotor gaits and speeds for the same subjects. Thus, comparing relative EMG amplitudes between these activities has not been possible. We assessed the EMG activity of the gluteal muscles during walking, running, sprinting, and climbing. To gain further insight into the function of the gluteal muscles during locomotion, we measured muscle activity during walking and running with external devices that increased or decreased the need to control either forward or backward trunk pitch. We hypothesized that 1) GMAX EMG activity would be greatest during sprinting and climbing and 2) GMAX EMG activity would be modulated in response to altered forward trunk pitch demands during running. We found that GMAX activity in running was greater than walking and similar to climbing. However, the activity during sprinting was much greater than during running. Further, only the inferior portion of the GMAX had a significant change with altered trunk pitch demands, suggesting that the hip extensors have a limited contribution to the control of trunk pitch movements during running. Overall, our data suggest that the large size of the GMAX reflects its multifaceted role during rapid and powerful movements rather than as a specific adaptation for a single submaximal task such as endurance running. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.
    American Journal of Physical Anthropology 01/2014; 153(1). DOI:10.1002/ajpa.22419 · 2.38 Impact Factor
Show more