Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium

Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
Physiology & Behavior (Impact Factor: 2.98). 11/2006; 89(3):350-7. DOI: 10.1016/j.physbeh.2006.06.019
Source: PubMed


Symptoms of anxiety frequently occur concomitant to the development and persistence of inflammatory bowel disease (IBD) in patients. In the present study, we utilized an animal model of IBD, infection with Citrobacter rodentium, to determine whether the infection per se can drive anxiety-like behavior. Nine-week-old CF-1 male mice were challenged orally with either saline or C. rodentium. Early in the infective process (7-8 h later), mice were tested on a hole-board open field apparatus for anxiety-like behavior measurement. Immediately following behavioral testing, plasma samples were obtained for immune cytokine analysis and colons were excised for histological analysis. In additional animals, vagal ganglia were removed and processed for c-Fos protein detection. Challenge with C. rodentium significantly increased anxiety-like behavior as evidenced by avoidance of the center area and increased risk assessment behavior. Plasma levels of the cytokines IFN-gamma, TNF-alpha and IL-12 were not different. However vagal sensory ganglia from C. rodentium-treated animals evinced significantly more c-Fos protein-positive neurons, consistent with vagal afferent transmission of C. rodentium-related signals from gut to brain. Histological examination of the colon indicated a lack of overt inflammation at the 8 h post-challenge time point, indicating that the differences in behavior were unlikely to follow from inflammation-related stress. The results of the present study demonstrate that infection with C. rodentium can induce anxiety-like symptoms that are likely mediated via vagal sensory neurons.

Download full-text


Available from: Lisa E Goehler,
  • Source
    • "It is well understood that via the axis that the brain can regulate gut activity (Cryan & O'Mahony 2011), but other works have focused on the reverse pathway and is indicating that the gut microbes can influence the brain. An investigation by Lyte et al. (2006) using mice demonstrated that the brain responds within hours to the introduction of a pathogen (C. rodentium) into the gut, long before manifestation of any infection-related symptoms. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The human body is home to trillions of microorganisms which are increasingly being shown to have significant effects on a variety of disease states. Evidence exists that a bidirectional communication is taking place between us and our microbiome co-habitants, and that this dialogue is capable of influencing our health in a variety of ways. This review considers how host hormonal signals shape the microbiome, and what in return the microbiome residents may be signalling to their hosts.
    Journal of Endocrinology 03/2015; 225(2). DOI:10.1530/JOE-14-0615 · 3.72 Impact Factor
  • Source
    • "Therefore, these results must be interpreted with caution. The observed lack of effect of IAA treatment on hypothalamic c-fos expression seems to be in contrast to the many reports that describe an induction of c-fos expression in a variety of brain areas in response to a wide range of stressors, including restraint, swimming, audiogenic noise and immune challenge [60-63]. However, these stressors that induce c-fos expression are acute stressors. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human and animals studies support the idea that there is a gender-related co-morbidity of pain-related and inflammatory gastrointestinal (GI) diseases with psychological disorders. This co-morbidity is the evidence for the existence of GI-brain axis which consists of immune (cytokines), neural (vagus nerve) and neuroendocrine (HPA axis) pathways. Psychological stress causes disturbances in GI physiology, such as altered GI barrier function, changes in motility and secretion, development of visceral hypersensitivity, and dysfunction of inflammatory responses. Whether GI inflammation would exert impact on psychological behavior is not well established. We examined the effect of experimental gastritis on anxiety- and depression-like behaviors in male and female Sprague-Dawley rats, and evaluated potential mechanisms of action. Gastritis was induced by adding 0.1% (w/v) iodoacetamide (IAA) to the sterile drinking water for 7 days. Sucrose preference test assessed the depression-like behavior, open field test and elevated plus maze evaluated the anxiety-like behavior. IAA treatment induced gastric inflammation in rats of either gender. No behavioral abnormality or dysfunction of GI-brain axis was observed in male rats with IAA-induced gastritis. Anxiety- and depression-like behaviors were apparent and the HPA axis was hyperactive in female rats with IAA-induced gastritis. Our results show that gastric inflammation leads to anxiety- and depression-like behaviors in female but not male rats via the neuroendocrine (HPA axis) pathway, suggesting that the GI inflammation can impair normal brain function and induce changes in psychological behavior in a gender-related manner through the GI-to-brain signaling.
    Behavioral and Brain Functions 12/2013; 9(1):46. DOI:10.1186/1744-9081-9-46 · 1.97 Impact Factor
  • Source
    • "The open field is the most commonly used behavioral test to determine if immunological manipulations have affected mobility (ie, induced sickness behavior). Animals that have been given a peripheral immune challenge show a robust decrease in mobility which has been correlated to heightened activation of areas in the CNS related to sickness behavior such as the paraventricular nucleus, nucleus of the solitary tract, and ventral lateral medulla.11 Current data show that a single dose bacterial load of 4.0 × 107 cfu E. coli was sufficient to induce a decrease in open field activity in male FVB mice, and there was a further reduction following even higher doses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral immune activation by bacterial mimics or live replicating pathogens is well known to induce central nervous system activation. Sickness behavior alterations are often associated with inflammation-induced increases in peripheral proinflammatory cytokines (eg, interleukin [IL]-1β and IL-6). However, most researchers have used acute high dose endotoxin/bacterial challenges to observe these outcomes. Using this methodology may pose inherent risks in the translational interpretation of the experimental data in these studies. Studies using Escherichia coli have yet to establish the full kinetics of repeated E. coli peripheral injections. Therefore, we sought to examine the effects of repeated low dose E. coli on sickness behavior and local peripheral inflammation in the open field test. Results from the current experiments showed a behavioral dose response, where increased amounts of E. coli resulted in correspondingly increased sickness behavior. Furthermore, animals that received a subthreshold dose (ie, one that did not cause sickness behavior) of E. coli 24 hours prior were able to withstand a larger dose of E. coli on the second day (a dose that would normally cause sickness behavior in mice without prior exposure) without inducing sickness behavior. In addition, animals that received escalating subthreshold doses of E. coli on days 1 and 2 behaviorally tolerated a dose of E. coli 25 times higher than what would normally cause sickness behavior if given acutely. Lastly, increased levels of E. coli caused increased IL-6 and IL-1β protein expression in the peritoneal cavity, and this increase was blocked by administering a subthreshold dose of E. coli 24 hours prior. These data show that progressive challenges with subthreshold levels of E. coli may obviate the induction of sickness behavior and proinflammatory cytokine expression.
    Journal of Inflammation Research 07/2013; 6(1):91-8. DOI:10.2147/JIR.S45111
Show more