Mouse models of breast cancer metastasis

Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences (DKBW), Center of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
Breast cancer research: BCR (Impact Factor: 5.88). 02/2006; 8(4):212. DOI: 10.1186/bcr1530
Source: PubMed

ABSTRACT Metastatic spread of cancer cells is the main cause of death of breast cancer patients, and elucidation of the molecular mechanisms underlying this process is a major focus in cancer research. The identification of appropriate therapeutic targets and proof-of-concept experimentation involves an increasing number of experimental mouse models, including spontaneous and chemically induced carcinogenesis, tumor transplantation, and transgenic and/or knockout mice. Here we give a progress report on how mouse models have contributed to our understanding of the molecular processes underlying breast cancer metastasis and on how such experimentation can open new avenues to the development of innovative cancer therapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The existing shortage of animal models that properly mimic the progression of early-stage human lung cancer from a solitary confined tumor to an invasive metastatic disease hinders accurate characterization of key interactions between lung cancer cells and their stroma. We herein describe a novel orthotopic animal model that addresses these concerns and consequently serves as an attractive platform to study tumor-stromal cell interactions under conditions that reflect early-stage lung cancer. Unlike previous methodologies, we directly injected small numbers of human or murine lung cancer cells into murine's left lung and longitudinally monitored disease progression. Next, we used green fluorescent protein-tagged tumor cells and immuno-fluorescent staining to determine the tumor's microanatomic distribution and to look for tumor-infiltrating immune cells and stromal cells. Finally, we compared chemokine gene expression patterns in the tumor and lung microenvironment. We successfully generated a solitary pulmonary nodule surrounded by normal lung parenchyma that grew locally and spread distally over time. Notably, we found that both fibroblasts and leukocytes are recruited to the tumor's margins and that distinct myeloid cell attracting and CCR2-binding chemokines are specifically induced in the tumor microenvironment. Our orthotopic lung cancer model closely mimics the pathologic sequence of events that characterizes early-stage human lung cancer propagation. It further introduces new means to monitor tumor-stromal cell interactions and offers unique opportunities to test therapeutic targets under conditions that reflect early-stage lung cancer. We argue that for such purposes our model is superior to lung cancer models that are based either on genetic induction of epithelial transformation or on ectopic transplantation of malignant cells.
    Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer 01/2015; 10(1):46-58. DOI:10.1097/JTO.0000000000000367 · 5.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on a microfluidic trap array that separates and captures circulating tumor cells (CTCs) from whole blood. The device is a series array of microfluidic branches that utilizes the difference in flow rates between the bypass channel and the trap channel to allow CTCs in whole blood to be separated and trapped. Once a trap has captured a cell with diameter larger than the narrow trap outlet, additional cells arriving at the branch would flow towards the bypass channel due to its lower flow resistance. Results demonstrated that it was possible to capture CTCs from the whole blood of a mouse with full-blown metastasis. With further developments, the bypass integrated microfluidic trap array could become a useful tool for the early prognosis of cancer metastasis.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionPeriostin (Postn) is a secreted cell adhesion protein that activates signaling pathways to promote cancer cell survival, angiogenesis, invasion, and metastasis. Interestingly, Postn is frequently overexpressed in numerous human cancers, including breast, lung, colon, pancreatic, and ovarian cancer.Methods Using transgenic mice expressing the Neu oncogene in the mammary epithelium crossed into Postn-deficient animals, we have assessed the effect of Postn gene deletion on Neu-driven mammary tumorigenesis.ResultsAlthough Postn is exclusively expressed in the stromal fibroblasts of the mammary gland, Postn deletion does not affect mammary gland outgrowth during development or pregnancy. Furthermore, we find that loss of Postn in the mammary epithelium does not alter breast tumor initiation or growth in mouse mammary tumour virus (MMTV)-Neu expressing mice but results in an apocrine-like tumor phenotype. Surprisingly, we find that tumors derived from Postn-null animals express low levels of Notch protein and Hey1 mRNA but increased expression of androgen receptor (AR) and AR target genes. We show that tumor cells derived from wildtype animals do not proliferate when transplanted in a Postn-null environment but that this growth defect is rescued by the overexpression of active Notch or the AR target gene prolactin-induced protein (PIP/GCDFP-15).Conclusion Together our data suggest that loss of Postn in an ErbB2/Neu/HER2 overexpression model results in apocrine-like tumors that activate an AR-dependent pathway. This may have important implications for the treatment of breast cancers involving the therapeutic targeting of periostin or Notch signaling.
    Breast cancer research: BCR 01/2015; 17(1):7. DOI:10.1186/s13058-014-0513-8 · 5.88 Impact Factor

Preview (3 Sources)

Available from