Article

Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition.

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
Protist (Impact Factor: 3.56). 11/2006; 157(4):401-19. DOI: 10.1016/j.protis.2006.05.011
Source: PubMed

ABSTRACT Hatena arenicola gen. et sp. nov., an enigmatic flagellate of the katablepharids, is described. It shows ultrastructural affinities to the katablepharids, including large and small ejectisomes, cell covering, and a feeding apparatus. Although molecular phylogenies of the 18S ribosomal DNA support its classification into the katablepharids, the cell is characterized by a dorsiventrally compressed cell shape and a crawling motion, both of which are unusual within this group. The most distinctive feature of Hatena arenicola is that it harbors a Nephroselmis symbiont. This symbiosis is distinct from previously reported cases of ongoing symbiosis in that the symbiont plastid is selectively enlarged, while other structures such as the mitochondria, Golgi body, cytoskeleton, and endomembrane system are degraded; the host and symbiont have developed a morphological association, i.e., the eyespot of the symbiont is always at the cell apex of Hatena arenicola; and only one daughter cell inherits the symbiont during cell division, resulting in a symbiont-bearing green cell and a symbiont-lacking colorless cell. Interestingly, the colorless cells have a feeding apparatus that corresponds to the location of the eyespot in symbiont-bearing cells, and they are able to feed on prey cells. This indicates that the morphology of the host depends on the presence or absence of the symbiont. These observations suggest that Hatena arenicola has a unique "half-plant, half-predator" life cycle; one cell divides into an autotrophic cell possessing a symbiotic Nephroselmis species, and a symbiont-lacking colorless cell, which later develops a feeding apparatus de novo. The evolutionary implications of Hatena arenicola as an intermediate step in plastid acquisition are discussed in the context of other examples of ongoing endosymbioses in dinoflagellates.

0 Followers
 · 
224 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: How to reconcile the theory of evolution with existing religious beliefs has occupied minds since Darwin's time. The majority of the discourse on the subject is still focused on the Darwinian version of evolutionary theory, or at best, the mid-twentieth century version of the Modern Synthesis. However, evolutionary thought has moved forward since then with the insights provided by the advent of comparative genomics in recent decades having a particularly significant impact. A theology that successfully incorporates evolutionary biology needs to take such developments into account, because range of truly viable options among the many versions of theistic evolution that have been proposed in the past may narrow down when this is done. Here I present these previously underappreciated strains of contemporary evolutionary thought and discuss their potential theological impact.
    Zygon(r) 12/2014; 49(4). DOI:10.1111/zygo.12130 · 0.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ejectisome fragments were isolated from the prasinophyte Pyramimonas grossii and subjected to different treatments, i.e. Percoll density gradient centrifugation, incubation at pH 2.5 or at pH 10.8, or incubation in 6 M guanidine hydrochloride. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that Percoll density gradient centrifugation did not improve the purity of the ejectisome fragment-enriched fractions. The ejectisome fragments withstood pH 2.5 and pH 10.8 treatment, and no loosely bound polypeptides became detached. The disintegration of ejectisome fragments was achieved in 6 M guanidine hydrochloride, and reassembly into filamentous, ejectisome-like structures occurred after dialysis against distilled water. Fractions enriched either in ejectisome fragments or in reconstituted ejectisome-like structures were dominated by three polypeptides with relative molecular weights of approximately 12.5-19 kDa and two additional polypeptides of 23 and 26 kDa. A polyclonal antiserum directed against an ejectisome fragment-enriched fraction weakly cross-reacted with these polypeptides, and no significant immuno-labelling of ejectisome fragments was registered. A positive immuno-label was achieved using immunoglobulin (IgG) fractions which were gained by selectively incubating nitrocellulose stripes of these polypeptides with the antiserum.
    European Journal of Protistology 06/2014; DOI:10.1016/j.ejop.2014.02.001 · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: No detailed studies have been performed to date on osmotolerance in cryptophytes, although one species, Chroomonas africana, had previously been reported to grow in freshwater as well as seawater. This study focused on osmotolerance in Chroomonas. Growth at different osmolalities and parameters of contractile vacuole function were examined and compared across a high-resolution phylogeny. Two evolutionary lineages in the Chroomonas clade proved to be euryhaline. Ranges of osmotolerance depended not only on osmolality, but also in the culture medium. All cryptophytes contained contractile vacuoles. In the euryhaline strain CCAP 978/08 contractile vacuoles could be observed even at an osmolality beyond that of seawater. In addition the cells accumulated floridoside, an osmoprotectant likely originating from the red algal carbohydrate metabolism of the complex rhodoplast. Further evidence for functional contractile vacuoles also in marine cryptophytes was provided by identification of contractile vacuole-specific genes in the genome of Guillardia theta.
    Protist 03/2014; 165(2). DOI:10.1016/j.protis.2014.01.001 · 3.56 Impact Factor

Full-text (2 Sources)

Download
690 Downloads
Available from
May 16, 2014