Article

Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition.

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
Protist (Impact Factor: 3.56). 11/2006; 157(4):401-19. DOI: 10.1016/j.protis.2006.05.011
Source: PubMed

ABSTRACT Hatena arenicola gen. et sp. nov., an enigmatic flagellate of the katablepharids, is described. It shows ultrastructural affinities to the katablepharids, including large and small ejectisomes, cell covering, and a feeding apparatus. Although molecular phylogenies of the 18S ribosomal DNA support its classification into the katablepharids, the cell is characterized by a dorsiventrally compressed cell shape and a crawling motion, both of which are unusual within this group. The most distinctive feature of Hatena arenicola is that it harbors a Nephroselmis symbiont. This symbiosis is distinct from previously reported cases of ongoing symbiosis in that the symbiont plastid is selectively enlarged, while other structures such as the mitochondria, Golgi body, cytoskeleton, and endomembrane system are degraded; the host and symbiont have developed a morphological association, i.e., the eyespot of the symbiont is always at the cell apex of Hatena arenicola; and only one daughter cell inherits the symbiont during cell division, resulting in a symbiont-bearing green cell and a symbiont-lacking colorless cell. Interestingly, the colorless cells have a feeding apparatus that corresponds to the location of the eyespot in symbiont-bearing cells, and they are able to feed on prey cells. This indicates that the morphology of the host depends on the presence or absence of the symbiont. These observations suggest that Hatena arenicola has a unique "half-plant, half-predator" life cycle; one cell divides into an autotrophic cell possessing a symbiotic Nephroselmis species, and a symbiont-lacking colorless cell, which later develops a feeding apparatus de novo. The evolutionary implications of Hatena arenicola as an intermediate step in plastid acquisition are discussed in the context of other examples of ongoing endosymbioses in dinoflagellates.

0 Bookmarks
 · 
184 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: No detailed studies have been performed to date on osmotolerance in cryptophytes, although one species, Chroomonas africana, had previously been reported to grow in freshwater as well as seawater. This study focused on osmotolerance in Chroomonas. Growth at different osmolalities and parameters of contractile vacuole function were examined and compared across a high-resolution phylogeny. Two evolutionary lineages in the Chroomonas clade proved to be euryhaline. Ranges of osmotolerance depended not only on osmolality, but also in the culture medium. All cryptophytes contained contractile vacuoles. In the euryhaline strain CCAP 978/08 contractile vacuoles could be observed even at an osmolality beyond that of seawater. In addition the cells accumulated floridoside, an osmoprotectant likely originating from the red algal carbohydrate metabolism of the complex rhodoplast. Further evidence for functional contractile vacuoles also in marine cryptophytes was provided by identification of contractile vacuole-specific genes in the genome of Guillardia theta.
    Protist 03/2014; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ejectisome fragments were isolated from the prasinophyte Pyramimonas grossii and subjected to different treatments, i.e. Percoll density gradient centrifugation, incubation at pH 2.5 or at pH 10.8, or incubation in 6 M guanidine hydrochloride. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that Percoll density gradient centrifugation did not improve the purity of the ejectisome fragment-enriched fractions. The ejectisome fragments withstood pH 2.5 and pH 10.8 treatment, and no loosely bound polypeptides became detached. The disintegration of ejectisome fragments was achieved in 6 M guanidine hydrochloride, and reassembly into filamentous, ejectisome-like structures occurred after dialysis against distilled water. Fractions enriched either in ejectisome fragments or in reconstituted ejectisome-like structures were dominated by three polypeptides with relative molecular weights of approximately 12.5-19 kDa and two additional polypeptides of 23 and 26 kDa. A polyclonal antiserum directed against an ejectisome fragment-enriched fraction weakly cross-reacted with these polypeptides, and no significant immuno-labelling of ejectisome fragments was registered. A positive immuno-label was achieved using immunoglobulin (IgG) fractions which were gained by selectively incubating nitrocellulose stripes of these polypeptides with the antiserum.
    European Journal of Protistology 06/2014; · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endosymbiosis is a central and much studied process in the evolution of eukaryotes. While plastid evolution in eukaryotic algae has been extensively studied, much less is known about the evolution of mixotrophy in amoeboid protists, which has been found in three of the five super groups of Eukaryotes. We identified the green endosymbionts in four obligate mixotrophic testate amoeba species belonging to three major eukaryotic clades, Hyalosphenia papilio and Heleopera sphagni (Amoebozoa: Arcellinida), Placocista spinosa (Rhizaria: Euglyphida), and Archerella flavum (Stramenopiles: Labyrinthulomycetes) based on rbcL (ribulose-1,5-diphosphate carboxylase/oxygenase large subunit) gene sequences. We further investigated whether there were different phylotypes of algal endosymbionts within single H. papilio cells and the degree of host-symbiont specificity by amplifying two genes: COI (mitochondrial cytochrome oxydase subunit 1) from the testate amoeba host, and rbcL from the endosymbiont. Results show that all studied endosymbionts belong to genus Chlorella sensu stricto, closely related to Paramecium bursaria Chlorella symbionts, some lichen symbionts and also several free-living algae. Most rbcL gene sequences derived from symbionts from all testate amoeba species were almost identical (at most 3 silent nucleotides difference out of 780 bp) and were assigned to a new Trebouxiophyceae taxon we named TACS (Testate Amoeba Chlorella Symbionts). This “one alga fits all mixotrophic testate amoeba” pattern suggests that photosynthetic symbionts have pre-adaptations to endosymbiosis and colonise diverse hosts from a free-living stage.
    Protist 01/2014; · 3.56 Impact Factor

Full-text (2 Sources)

Download
565 Downloads
Available from
May 16, 2014