Article

Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer.

Department of Medicine, Royal Marsden NHS Foundation Trust, London, UK.
Drugs of today (Barcelona, Spain: 1998) (Impact Factor: 1.22). 08/2006; 42(7):441-53. DOI: 10.1358/dot.2006.42.7.985637
Source: PubMed

ABSTRACT Lapatinib is an oral dual tyrosine kinase inhibitor that targets epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2), both frequently overexpressed in human cancer. Preclinical data have shown that lapatinib is a potent and selective inhibitor of the tyrosine kinase domain of EGFR and HER2, and tumor cells that overexpress these receptors are growth inhibited by lapatinib both in vitro and in vivo. Phase I clinical trials have shown that lapatinib is well tolerated, with mild diarrhea and rash the most frequent toxicities, and early evidence of clinical efficacy has been reported especially in HER2-positive breast cancer. Phase II studies have shown activity for lapatinib in trastuzumab-refractory breast cancer either alone or in combination with trastuzumab. When used as first-line monotherapy for advanced breast cancer, objective tumor responses have been seen in 28% of patients with untreated HER2-positive advanced breast cancer. An extensive phase III program in advanced breast cancer is now in progress both for refractory disease and as first-line therapy in combination with chemotherapy with and without trastuzumab, and with endocrine therapy. Phase II studies have also been conducted in a variety of other tumors, including renal cell cancer. Parallel biomarker studies are starting to elucidate predictive molecular phenotypes that may indicate likelihood of response to lapatinib, and these may direct future trials with this oral tyrosine kinase inhibitor.

0 Bookmarks
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-cancer agents delivered to cancer cells often show multi-drug resistance (MDR) due to expulsion of the agents. One way to address this problem is to increase the accumulation of anti-cancer agents in cells via amino acid transporters. Thus, we newly synthesized val-lapatinib and tyr-lapatinib, by adding valine and tyrosine moieties, respectively, to the parent anti-cancer agent lapatinib without stability issues in rat plasma. Val-lapatinib and tyr-lapatinib showed enhanced anti-cancer effects versus the parent lapatinib in various cancer cell lines, including human breast cancer cells (MDA-MB-231, MCF7) and lung cancer cells (A549), but not in non-cancerous MDCK-II cells. A glutamine uptake study revealed that both val-lapatinib and tyr-lapatinib, but not the parent lapatinib, inhibited glutamine transport in MDA-MB-231 and MCF7 cells, suggesting the involvement of amino acid transporters. In conclusion, val-lapatinib and tyr-lapatinib have enhanced anti-cancer effects, likely due to increased uptake of the agents into cancer cells via amino acid transporters. The present data suggest that amino acid transporters may be an effective drug delivery target to increase the uptake of anti-cancer agents, leading to one method of overcoming MDR in cancer cells. This article is protected by copyright. All rights reserved.
    Biopharmaceutics & Drug Disposition 10/2013; · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is one of the most common cancers with greater than 1,300,000 cases and 450,000 deaths each year worldwide. The development of breast cancer involves a progression through intermediate stages until the invasive carcinoma and finally into metastatic disease. Given the variability in clinical progression, the identification of markers that could predict the tumor behavior is particularly important in breast cancer. The determination of tumor markers is a useful tool for clinical management in cancer patients, assisting in diagnostic, staging, evaluation of therapeutic response, detection of recurrence and metastasis, and development of new treatment modalities. In this context, this review aims to discuss the main tumor markers in breast carcinogenesis. The most well-established breast molecular markers with prognostic and/or therapeutic value like hormone receptors, HER-2 oncogene, Ki-67, and p53 proteins, and the genes for hereditary breast cancer will be presented. Furthermore, this review shows the new molecular targets in breast cancer: CXCR4, caveolin, miRNA, and FOXP3, as promising candidates for future development of effective and targeted therapies, also with lower toxicity.
    Disease markers 01/2014; 2014:513158. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The past decade has seen tremendous efforts in the research and development of new chemotherapeutic drugs using target-based approaches. These efforts have led to the discovery of small molecule tyrosine kinase inhibitors (TKIs). Following the initial approval of imatinib by the US FDA in 2001, more than 15 TKIs targeting different tyrosine kinases have been approved, and numerous others are in various phases of clinical evaluation. Unlike conventional chemotherapy that can cause non-discriminating damage to both normal and cancerous cells, TKIs attack cancer-specific targets and therefore have a more favorable safety profile. However, although TKIs have had outstanding success in cancer therapy, there has been increasing evidence of resistance to TKIs. The enhanced efflux of TKIs by ATP-binding cassette (ABC) transporters over-expressed in cancer cells has been found to be one such important resistance mechanism. Another major drawback of TKI therapies that has been increasingly recognized is the extensive inter-individual pharmacokinetic variability, in which ABC transporters seem to play a major role as well. This review covers recent findings on the interactions of small molecule TKIs with ABC transporters. The effects of ABC transporters on anticancer efficacy and the absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) of the small molecule TKIs are summarized in detail. Since TKIs have been found to not only serve as substrates of ABC transporters, but also as modulators of these proteins via inhibition or induction, their influence upon ABC transporters and potential role on TKI-drug interactions are discussed as well.
    Pharmaceutical research. 05/2014;