Article

Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer.

Department of Medicine, Royal Marsden NHS Foundation Trust, London, UK.
Drugs of today (Barcelona, Spain: 1998) (Impact Factor: 1). 08/2006; 42(7):441-53. DOI: 10.1358/dot.2006.42.7.985637
Source: PubMed

ABSTRACT Lapatinib is an oral dual tyrosine kinase inhibitor that targets epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2), both frequently overexpressed in human cancer. Preclinical data have shown that lapatinib is a potent and selective inhibitor of the tyrosine kinase domain of EGFR and HER2, and tumor cells that overexpress these receptors are growth inhibited by lapatinib both in vitro and in vivo. Phase I clinical trials have shown that lapatinib is well tolerated, with mild diarrhea and rash the most frequent toxicities, and early evidence of clinical efficacy has been reported especially in HER2-positive breast cancer. Phase II studies have shown activity for lapatinib in trastuzumab-refractory breast cancer either alone or in combination with trastuzumab. When used as first-line monotherapy for advanced breast cancer, objective tumor responses have been seen in 28% of patients with untreated HER2-positive advanced breast cancer. An extensive phase III program in advanced breast cancer is now in progress both for refractory disease and as first-line therapy in combination with chemotherapy with and without trastuzumab, and with endocrine therapy. Phase II studies have also been conducted in a variety of other tumors, including renal cell cancer. Parallel biomarker studies are starting to elucidate predictive molecular phenotypes that may indicate likelihood of response to lapatinib, and these may direct future trials with this oral tyrosine kinase inhibitor.

0 Bookmarks
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the most commonly diagnosed cancer in women. The latest world cancer statistics calculated by the International Agency for Research on Cancer (IARC) revealed that 1,677,000 women were diagnosed with breast cancer in 2012 and 577,000 died. The TNM classification of malignant tumor (TNM) is the most commonly used staging system for breast cancer. Breast cancer is a group of very heterogeneous diseases. The molecular subtype of breast cancer carries important predictive and prognostic values, and thus has been incorporated in the basic initial process of breast cancer assessment/diagnosis. Molecular subtypes of breast cancers are divided into human epidermal growth factor receptor 2 positive (HER2 +), hormone receptor positive (estrogen or progesterone +), both positive, and triple negative breast cancer. By virtue of early detection via mammogram, the majority of breast cancers in developed parts of world are diagnosed in the early stage of the disease. Early stage breast cancers can be completely resected by surgery. Over time however, the disease may come back even after complete resection, which has prompted the development of an adjuvant therapy. Surgery followed by adjuvant treatment has been the gold standard for breast cancer treatment for a long time. More recently, neoadjuvant treatment has been recognized as an important strategy in biomarker and target evaluation. It is clinically indicated for patients with large tumor size, high nodal involvement, an inflammatory component, or for those wish to preserve remnant breast tissue. Here we review the most up to date conventional and developing treatments for different subtypes of early stage breast cancer.
    F1000Research. 01/2014; 3:198.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The past decade has seen tremendous efforts in the research and development of new chemotherapeutic drugs using target-based approaches. These efforts have led to the discovery of small molecule tyrosine kinase inhibitors (TKIs). Following the initial approval of imatinib by the US FDA in 2001, more than 15 TKIs targeting different tyrosine kinases have been approved, and numerous others are in various phases of clinical evaluation. Unlike conventional chemotherapy that can cause non-discriminating damage to both normal and cancerous cells, TKIs attack cancer-specific targets and therefore have a more favorable safety profile. However, although TKIs have had outstanding success in cancer therapy, there has been increasing evidence of resistance to TKIs. The enhanced efflux of TKIs by ATP-binding cassette (ABC) transporters over-expressed in cancer cells has been found to be one such important resistance mechanism. Another major drawback of TKI therapies that has been increasingly recognized is the extensive inter-individual pharmacokinetic variability, in which ABC transporters seem to play a major role as well. This review covers recent findings on the interactions of small molecule TKIs with ABC transporters. The effects of ABC transporters on anticancer efficacy and the absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) of the small molecule TKIs are summarized in detail. Since TKIs have been found to not only serve as substrates of ABC transporters, but also as modulators of these proteins via inhibition or induction, their influence upon ABC transporters and potential role on TKI-drug interactions are discussed as well.
    Pharmaceutical Research 05/2014; · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This letter describes the construction of conformationally constrained quinazoline analogues. Structure-activity relationship studies led to the identification of the lead compound 9n . Compound 9n exhibits effective in vitro activity against A431(WT,overexpression) and H1975([L858R/T790M]) cancer cell lines but is significantly less effective against EGFR negative cancer cell lines (SW620, A549, and K562). Compound 9n was also assessed for potency in enzymatic assays and in vivo antitumor studies. The results indicated that 9n is a potent kinase inhibitor against both wild-type and T790M mutant EGFR kinase. Meanwhile, an oral administration of 9n at a dose of 200 mg/kg produced a considerable antitumor effect in a A431 xenograft model, as compared to gefitinib. A preliminary pharmacokinetic study of 9n also indicates it has good pharmacokinetic properties, and therefore, it is a good starting point for further development.
    ACS Medicinal Chemistry Letters 10/2013; 4(10):974-8. · 3.07 Impact Factor