Article

[(11)]PIB in a nondemented population - Potential antecedent marker of Alzheimer disease

Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
Neurology (Impact Factor: 8.3). 09/2006; 67(3):446-52. DOI: 10.1212/01.wnl.0000228230.26044.a4
Source: PubMed

ABSTRACT Beta-amyloid (Abeta) plaques are the hallmark of Alzheimer disease (AD). A PET imaging tracer that binds to Abeta plaques in vivo, N-methyl-[(11)C]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (or [(11)C]PIB for "Pittsburgh Compound-B"), has significantly higher binding in subjects diagnosed with dementia of the Alzheimer type (DAT) compared to nondemented controls. The authors used this imaging technique to investigate whether abnormal binding occurs in clinically normal individuals, prior to the development of cognitive changes.
Forty-one nondemented subjects (age range 20 to 86 years) and 10 patients with DAT (age range 66 to 86 years) underwent [(11)C]PIB PET scanning. Regions of interest were drawn on the MRI over the cerebellar, prefrontal, lateral temporal, occipital, gyrus rectus, precuneus, and striatal cortex. Binding potential values (BPs), proportional to the density of [(11)C]PIB-Abeta binding sites, were calculated using the Logan graphical analysis and the cerebellar cortex for a reference tissue.
Patients with DAT had elevated BP values vs nondemented subjects (p < 0.0001). Four of the 41 nondemented subjects had elevated cortical BP values and their BP values as a group were not significantly different from the DAT subjects' BP values. Two of these four nondemented subjects had [(11)C]PIB uptake, both visually and quantitatively, that was indistinguishable from the DAT subjects.
Elevated [(11)C]PIB binding in nondemented subjects suggests that [(11)C]PIB amyloid imaging may be sensitive for detection of a preclinical Alzheimer disease state. Longitudinal studies will be required to determine the association of elevated [(11)C]PIB binding and risk of developing dementia of the Alzheimer type.

1 Bookmark
 · 
141 Views
  • 01/2015; DOI:10.1007/s13668-014-0111-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.
    PLoS ONE 12/2014; 9(12):e115923. DOI:10.1371/journal.pone.0115923 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Having a parent affected by late-onset Alzheimer's disease (AD) is a major risk factor for cognitively normal (NL) individuals. This study explores the potential of PET with (18)F-FDG and the amyloid- β (Aβ) tracer (11)C-Pittsburgh Compound B (PiB) for detection of individual risk in NL adults with AD-parents. FDG- and PiB-PET was performed in 119 young to late-middle aged NL individuals including 80 NL with positive family history of AD (FH+) and 39 NL with negative family history of any dementia (FH-). The FH+ group included 50 subjects with maternal (FHm) and 30 with paternal family history (FHp). Individual FDG and PiB scans were Z scored on a voxel-wise basis relative to modality-specific reference databases using automated procedures and rated as positive or negative (+/-) for AD-typical abnormalities using predefined criteria. To determine the effect of age, the cohort was separated into younger (49 ± 9 y) and older (68 ± 5 y) groups relative to the median age (60 y). Among individuals of age >60 y, as compared to controls, NL FH+ showed a higher frequency of FDG+ scans vs. FH- (53% vs. 6% p < 0.003), and a trend for PiB+ scans (27% vs. 11%; p = 0.19). This effect was observed for both FHm and FHp groups. Among individuals of age ≤60 y, NL FHm showed a higher frequency of FDG+ scans (29%) compared to FH- (5%, p = 0.04) and a trend compared to FHp (11%) (p = 0.07), while the distribution of PiB+ scans was not different between groups. In both age cohorts, FDG+ scans were more frequent than PiB+ scans among NL FH+, especially FHm (p < 0.03). FDG-PET was a significant predictor of FH+ status. Classification according to PiB status was significantly less successful. Automated analysis of FDG- and PiB-PET demonstrates higher rates of abnormalities in at-risk FH+ vs FH- subjects, indicating potentially ongoing early AD-pathology in this population. The frequency of metabolic abnormalities was higher than that of Aβ pathology in the younger cohort, suggesting that neuronal dysfunction may precede major aggregated Aβ burden in young NL FH+. Longitudinal follow-up is required to determine if the observed abnormalities predict future AD.
    Advances in Molecular Imaging 04/2014; 4(2):15-26. DOI:10.4236/ami.2014.42003

Full-text (2 Sources)

Download
70 Downloads
Available from
Jun 2, 2014