Scrambling of sequence information in collision-induced dissociation of peptides

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
Journal of the American Chemical Society (Impact Factor: 11.44). 09/2006; 128(32):10364-5. DOI: 10.1021/ja062440h
Source: PubMed

ABSTRACT Collision-induced dissociation (CID) of protonated YAGFL-NH2 leads to nondirect sequence fragment ions that cannot directly be derived from the primary peptide structure. Experimental and theoretical evidence indicate that primary fragmentation of the intact peptide leads to the linear YAGFLoxa b5 ion with a C-terminal oxazolone ring that is attacked by the N-terminal amino group to induce formation of a cyclic peptide b5 isomer. The latter can undergo various proton transfer reactions and opens up to form something other than the YAGFLoxa linear b5 isomer, leading to scrambling of sequence information in the CID of protonated YAGFL-NH2.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterization of ε-N-acetylated lysine containing peptides, one of the most prominent post-translational modifications of proteins, is an important goal for tandem mass spectrometry experiments. A systematic study for the fragmentation reactions of b ions derived from ε-N-acetyllysine containing model octapeptides (KAc YAGFLVG and YAKAc GFLVG) has been examined in detail. Collision-induced dissociation (CID) mass spectra of bn (n = 4-7) fragments of ε-N-acetylated lysine containing peptides are compared with those of N-terminal acetylated and doubly acetylated (both ε-N and N-terminal) peptides, as well as acetyl-free peptides. Both direct and nondirect fragments are observed for acetyl-free and singly acetylated (ε-N or N-terminal) peptides. In the case of ε-N-acetylated lysine containing peptides, however, specific fragment ions (m/z 309, 456, 569 and 668) are observed in CID mass spectra of bn (n = 4-7) ions. The CID mass spectra of these four ions are shown to be identical to those of selected protonated C-terminal amidated peptides. On this basis, a new type of rearrangement chemistry is proposed to account for the formation of these fragment ions, which are specific for ε-N-acetylated lysine containing peptides. Consistent with the observation of nondirect fragments, it is proposed that the b ions undergo head-to-tail macrocyclization followed by ring opening. The proposed reaction pathway assumes that bn (n = 4-7) of ε-N-acetylated lysine containing peptides has a tendency to place the KAc residue at the C-terminal position after macrocyclization/reopening mechanism. Then, following the loss of CO, it is proposed that the marker ions are the result of the loss of an acetyllysine imine as a neutral fragment. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
    Journal of Mass Spectrometry 12/2014; 49(12):1290-7. DOI:10.1002/jms.3462 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structure of the a 4 ion from protonated YGGFL was studied in a quadrupole ion trap mass spectrometer by 'action' infrared spectroscopy in the 1000–2000 cm –1 ('fingerprint') range using the CLIO Free Electron Laser. The potential energy surface (PES) of this ion was characterized by detailed molecular dynamics scans and density functional theory calculations exploring a large number of isomers and protonation sites. IR and theory indicate the a 4 ion population is primarily populated by the rearranged, linear structure proposed recently (Bythell et al., J. Am. Chem. Soc. 2010, 132, 14766). This structure contains an imine group at the N-terminus and an amide group – CO–NH 2 at the C-terminus. Our data also indicate that the originally proposed N-terminally protonated linear structure and macrocyclic structures (Polfer et al., J. Am. Chem. Soc. 2007, 129, 5887) are also present as minor populations. The clear differences between the present and previous IR spectra are discussed in detail. This mixture of gas-phase structures is also in agreement with the ion mobility spectrum published by Clemmer and co-workers recently (J. Phys. Chem. A 2008, 112, 1286). Additionally, the calculated cross-sections for the rearranged structures indicate these correspond to the most abundant (and previously unassigned) feature in Clemmer's work.
    Journal of the American Society for Mass Spectrometry 01/2012; 23:664-675. · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Charge-directed fragmentation has been shown to be the prevalent dissociation step for protonated peptides under the low-energy activation (eV) regime. Thus, the determination of the ion structure and, in particular, the characterization of the protonation site(s) of peptides and their fragments is a key approach to substantiate and refine peptide fragmentation mechanisms. Here we report on the characterization of the protonation site of oxazolone b 2 ions formed in collision-induced dissociation (CID) of the doubly protonated tryptic model-peptide YIGSR. In support of earlier work, here we provide complementary IR spectra in the 2800–3800 cm –1 range acquired on a table-top laser system. Combining this tunable laser with a high power CO 2 laser to improve spectroscopic sensitivity, well resolved bands are observed, with an excellent correspondence to the IR absorption bands of the ring-protonated oxazolone isomer as predicted by quantum chemical calculations. In particular, it is shown that a band at 3445 cm –1 , corresponding to the asymmetric N–H stretch of the (nonprotonated) N-terminal NH 2 group, is a distinct vibrational signature of the ring-protonated oxazolone structure.
    Journal of the American Society for Mass Spectrometry 01/2011; 22:1645-1650. · 3.19 Impact Factor