MITF: master regulator of melanocyte development and melanoma oncogene

Melanoma Program and Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, 44 Binney Street, Boston, MA 02115, USA.
Trends in Molecular Medicine (Impact Factor: 10.11). 10/2006; 12(9):406-14. DOI: 10.1016/j.molmed.2006.07.008
Source: PubMed

ABSTRACT Microphthalmia-associated transcription factor (MITF) acts as a master regulator of melanocyte development, function and survival by modulating various differentiation and cell-cycle progression genes. It has been demonstrated that MITF is an amplified oncogene in a fraction of human melanomas and that it also has an oncogenic role in human clear cell sarcoma. However, MITF also modulates the state of melanocyte differentiation. Several closely related transcription factors also function as translocated oncogenes in various human malignancies. These data place MITF between instructing melanocytes towards terminal differentiation and/or pigmentation and, alternatively, promoting malignant behavior. In this review, we survey the roles of MITF as a master lineage regulator in melanocyte development and its emerging activities in malignancy. Understanding the molecular function of MITF and its associated pathways will hopefully shed light on strategies for improving therapeutic approaches for these diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motivation: Understanding regulation of transcription is central for elucidating cellular regulation. Several statistical and mechanistic models have come up the last couple of years explaining gene transcription levels using information of potential transcriptional regulators as transcription factors (TFs) and information from epigenetic modifications. The activity of TFs is often inferred by their transcription levels, promoter binding and epigenetic effects. However, in principle, these methods do not take hard-to-measure influences such as post-transcriptional modifications into account. Results: For TFs, we present a novel concept circumventing this problem. We estimate the regulatory activity of TFs using their cumulative effects on their target genes. We established our model using expression data of 59 cell lines from the National Cancer Institute. The trained model was applied to an independent expression dataset of melanoma cells yielding excellent expression predictions and elucidated regulation of melanogenesis. Availability and implementation: Using mixed-integer linear programming, we implemented a switch-like optimization enabling a constrained but optimal selection of TFs and optimal model selection estimating their effects. The method is generic and can also be applied to further regulators of transcription. Contact: Supplementary information: Supplementary data are available at Bioinformatics online.
    08/2014; 30(17-17):i401-i407. DOI:10.1093/bioinformatics/btu446
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor superfamily, has potent anti-metastatic effects in cutaneous melanoma through its direct actions on endothelial and melanoma cells. Here we show that PEDF expression positively correlates with microphthalmia-associated transcription factor (MITF) in melanoma cell lines and human samples. High PEDF and MITF expression is characteristic of low aggressive melanomas classified according to molecular and pathological criteria, whereas both factors are decreased in senescent melanocytes and naevi. Importantly, MITF silencing down-regulates PEDF expression in melanoma cell lines and primary melanocytes, suggesting that the correlation in the expression reflects a causal relationship. In agreement, analysis of Chromatin immunoprecipitation coupled to high throughput sequencing (ChIP-seq) data sets revealed three MITF binding regions within the first intron of SERPINF1, and reporter assays demonstrated that the binding of MITF to these regions is sufficient to drive transcription. Finally, we demonstrate that exogenous PEDF expression efficiently halts in vitro migration and invasion, as well as in vivo dissemination of melanoma cells induced by MITF silencing. In summary, these results identify PEDF as a novel transcriptional target of MITF and support a relevant functional role for the MITF-PEDF axis in the biology of melanoma.
    Neoplasia (New York, N.Y.) 06/2014; 16(6). DOI:10.1016/j.neo.2014.06.001 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is the leading cause of death from skin cancer in industrialized countries. Several melanoma-related biomarkers and signaling pathways have been identified; however, their relevance to melanoma development/progression or to clinical outcome remains to be established. Aberrant activation of Wnt/β-catenin pathway is implicated in various cancers including melanoma. We have previously demonstrated Rad6, an ubiquitin-conjugating enzyme, as an important mediator of β-catenin stability in breast cancer cells. Similar to breast cancer, β-catenin-activating mutations are rare in melanomas, and since β-catenin signaling is implicated in melanoma, we examined the relationship between β-catenin levels/activity and expression of β-catenin transcriptional targets Rad6 and microphthalmia-associated transcription factor-M (Mitf-M) in melanoma cell models, and expression of Rad6, β-catenin, and Melan-A in nevi and cutaneous melanoma tissue specimens. Our data show that Rad6 is only weakly expressed in normal human melanocytes but is overexpressed in melanoma lines. Unlike Mitf-M, Rad6 overexpression in melanoma lines is positively associated with high molecular weight β-catenin protein levels and β-catenin transcriptional activity. Double-immunofluorescence staining of Rad6 and Melan-A in melanoma tissue microarray showed that histological diagnosis of melanoma is significantly associated with Rad6/Melan-A dual positivity in the melanoma group compared to the nevi group (P=.0029). In contrast to strong β-catenin expression in normal and tumor areas of superficial spreading malignant melanoma (SSMM), Rad6 expression is undetectable in normal areas and Rad6 expression increases coincide with increased Melan-A in the transformed regions of SSMM. These data suggest a role for Rad6 in melanoma pathogenesis and that Rad6 expression status may serve as an early marker for melanoma development.
    Translational oncology 05/2014; 7(3). DOI:10.1016/j.tranon.2014.04.009 · 3.40 Impact Factor