Article

Competing presynaptic and postsynaptic effects of ethanol on cerebellar purkinje neurons.

Department of Psychiatry, Center for Alcohol Studies, UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7178, USA.
Alcoholism Clinical and Experimental Research (Impact Factor: 3.31). 09/2006; 30(8):1400-7. DOI: 10.1111/j.1530-0277.2006.00167.x
Source: PubMed

ABSTRACT Ethanol has actions on cerebellar Purkinje neurons that can result either in a net excitation or in inhibition of neuronal activity. The present study examines the interplay of presynaptic and postsynaptic mechanisms to determine the net effect of ethanol on the neuronal firing rate of cerebellar Purkinje neurons.
Whole-cell voltage-clamp recording of miniature inhibitory postsynaptic currents (mIPSCs) from Purkinje neurons in cerebellar slices was used to examine the effect of ethanol on presynapticsynaptic release of gamma-aminobutyric acid (GABA) and glutamate. Extracellular recording was used to examine the net action of both presynaptic and postsynaptic effects of ethanol on the firing rate of Purkinje neurons.
Under whole-cell voltage clamp, the frequency of bicuculline-sensitive miniature postsynaptic currents (mIPSCs) was increased dose-dependently by 25, 50, and 100 mM ethanol without any change in amplitude or decay time. Despite this evidence of increased release of GABA by ethanol, application of 50 mM ethanol caused an increase in firing in some neurons and a decrease in firing in others with a nonrandom distribution. When both glutamatergic and GABAergic influences were removed by simultaneous application of 6-cyano-7-nitroquinoxaline-2,3-dione and picrotoxin, respectively, ethanol caused only an increase in firing rate.
These data are consistent with a dual action of ethanol on cerebellar Purkinje neuron activity. Specifically, ethanol acts presynaptically to increase inhibition by release of GABA, while simultaneously acting postsynaptically to increase intrinsic excitatory drive.

Download full-text

Full-text

Available from: George R Breese, Mar 13, 2014
0 Followers
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study assessed the acute effect of ethanol on GABAergic transmission at molecular layer interneurons (MLIs; i.e. basket and stellate cells) in the cerebellar cortex. The actions of ethanol on spontaneous firing of these pacemaker neurons were also measured. Transgenic mice (glutamic acid-decarboxylase 67-green fluorescent protein knock-in mice) that express green fluorescence protein in GABAergic interneurons were used to aid in the identification of MLIs. Parasagittal cerebellar slices were prepared and whole-cell patch-clamp electrophysiological techniques were used to measure GABA(A) receptor-mediated spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs). Loose-seal cell-attached recordings were used to measure spontaneous action potential firing. Stellate cells received spontaneous GABAergic input in the form of a mixture of action potential-dependent events (sIPSCs) and quantal events (mIPSCs); ethanol increased sIPSC frequency to a greater extent than mIPSC frequency. Ethanol increased spontaneous action potential firing of MLIs, which could explain the increase in sIPSC frequency in stellate cells. Basket cells received GABAergic input in the form of quantal events only. Ethanol significantly increased the frequency of these events, which may be mediated by a different type of interneuron (perhaps, the Lugaro cell) or Purkinje cell collaterals. Ethanol exposure differentially increases GABA release at stellate cell vs. basket cell-to-Purkinje cell synapses. This effect may contribute to the abnormalities in cerebellar function associated with alcohol intoxication.
    Alcohol and Alcoholism 11/2011; 47(1):1-8. DOI:10.1093/alcalc/agr147 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While research on the actions of ethanol at the GABAergic synapse has focused on postsynaptic mechanisms, recent data have demonstrated that ethanol also facilitates GABA release from presynaptic terminals in many, but not all, brain regions. The ability of ethanol to increase GABA release can be regulated by different G protein-coupled receptors (GPCRs), such as the cannabinoid-1 receptor, corticotropin-releasing factor 1 receptor, GABA(B) receptor, and the 5-hydroxytryptamine 2C receptor. The intracellular messengers linked to these GPCRs, including the calcium that is released from internal stores, also play a role in ethanol-enhanced GABA release. Hypotheses are proposed to explain how ethanol interacts with the GPCR pathways to increase GABA release and how this interaction contributes to the brain region specificity of ethanol-enhanced GABA release. Defining the mechanism of ethanol-facilitated GABA release will further our understanding of the GABAergic profile of ethanol and increase our knowledge of how GABAergic neurotransmission may contribute to the intoxicating effects of alcohol and to alcohol dependence.
    Brain Research Reviews 01/2011; 65(2):113-23. DOI:10.1016/j.brainresrev.2010.09.003 · 5.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP(3)Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP(3)Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP(3)Rs requires binding of IP(3), generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP(3)R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP(3)R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells.
    Neuropharmacology 03/2010; 58(7):1179-86. DOI:10.1016/j.neuropharm.2010.02.018 · 4.82 Impact Factor