A retrovirus-based system to stably silence hepatitis B virus genes by RNA interference

School of Life Sciences, Sichuan University, Chengdu , 610064, China.
Biotechnology Letters (Impact Factor: 1.59). 11/2006; 28(20):1679-85. DOI: 10.1007/s10529-006-9138-z
Source: PubMed


RNA interference (RNAi) might be an efficient antiviral therapy for some obstinate illness. Herein, a retrovirus-based RNAi system was developed to drive expression and delivery of Hepatitis B virus (HBV)-specific short hairpin RNA (shRNA) in HepG2 cells. The levels of HBsAg and HBeAg and that of HBV mRNA were dramatically decreased by this RNAi system in HepG2 cells transfected with Topo-HBV plasmid. Retrovirus-based RNAi thus may be useful for therapy in HBV and other viral infections and provide new clues for prophylactic vaccine development.

3 Reads
  • Source
    • "In order to address this issue, different viral gene delivery vectors have been tested. Several studies indicated that the adenovirus or retrovirus mediated RNAi delivery system was an extremely effective and long-term approach to express shRNA targeted to HBV and could suppress ongoing viral gene expression and replication in vitro or in vivo[21,40]. However, as adenoviral vectors are episomal, they are not subject to persistent effects, but are lost upon cell division, and being a common human pathogen, a large segment of the general population has pre-existing immunity against adenoviral proteins. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma. The major challenges for current therapies are the low efficacy of current drugs and the occurrence of drug resistant HBV mutations. RNA interference (RNAi) of virus-specific genes offers the possibility of developing a new anti-HBV therapy. Recent reports have shown that lentiviral vectors based on HIV-1 are promising gene delivery vehicles due to their ability to integrate transgenes into non-dividing cells. Herein, a lentivirus-based RNAi system was developed to drive expression and delivery of HBV-specific short hairpin RNA (shRNA) in a mouse model for HBV replication. Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) in the sera of the mice were analyzed by quantitative sandwich enzyme linked immunosorbent assay (ELISA) technique, hepatitis B core antigen (HBcAg) and HBsAg in the livers of the mice were detected by immunohistochemical assay, HBV DNA and HBV mRNA were measured by fluorogenic quantitative polymerase chain reaction (FQ-PCR) and quantitative real-time PCR respectively. Co-injection of HBV plasmids together with the lentivirus targeting HBV shRNA induced an RNAi response. Secreted HBsAg was reduced by 89% in mouse serum, and HBeAg was also significantly inhibited, immunohistochemical detection of HBcAg or HBsAg in the liver tissues also revealed substantial reduction. Lentiviral mediated shRNA caused a significant suppression in the levels of viral mRNA and DNA synthesis compared to the control group. Lentivirus-based RNAi can be used to suppress HBV replication in vivo, it might become a potential therapeutic strategy for treating HBV and other viral infections.
    BMC Gastroenterology 10/2009; 9(1):73. DOI:10.1186/1471-230X-9-73 · 2.37 Impact Factor
  • Source
    • "RNAi is mediated by activation of the RNA-induced silencing complex through its association with 21–23 nucleotide small interfering RNAs (siRNA) derived from Dicer-processed long double-stranded RNAs (Hammond et al., 2000, Hammond et al., 2001). Several studies have demonstrated the effectiveness of synthetic siRNA, vector-generated siRNA, and short hairpin RNA (shRNA) in the inhibition of HBV replication and antigen production (Chen et al., 2006, Jia et al., 2006, McCaffrey et al., 2003, Moore et al., 2005, Shlomai & Shaul, 2003, Uprichard et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the source of HBV transcripts and persistence in chronically infected patients. The novel aspect of this study was to determine the effect of RNA interference (RNAi) on HBV CCC DNA when administered prior to establishment of HBV replication or during chronic HBV infection. HBV replication was initiated in HepG2 cells by transduction with HBV baculovirus. Subculture of HBV-expressing HepG2 cells at 10 days post-transduction generates a system in which HBV replication is ongoing and HBV is expressed largely from CCC DNA, thus simulating chronic HBV infection. HepG2 cells were transduced with short hairpin RNA (shRNA)-expressing baculovirus prior to initiation of HBV replication or during chronic HBV replication, and the levels of HBV RNA, HBV surface antigens (HBsAg) and replicative intermediates (RI), extracellular (EC) and CCC DNA species were measured. HBsAg, HBV RNA and DNA levels were markedly reduced until day 8 whether cells were transduced with shRNA prior to or during a chronic infection; however, the CCC DNA species were only affected when shRNA was administered prior to initiation of infection. We conclude that RNAi may have a therapeutic value for controlling HBV replication at the level of RI and EC DNA and for reducing establishment of CCC DNA during HBV infection. Our data support previous findings demonstrating the stability of HBV CCC DNA following antiviral therapy. This study also reports the development of a novel HBV baculovirus subculture system that can be used to evaluate antiviral effects on chronic HBV replication.
    Journal of General Virology 02/2009; 90(Pt 1):115-26. DOI:10.1099/vir.0.004408-0 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the effect of RNAi on HBV replication was observed in a cell culture model, HepG2 2.2.15 cell line, which supports human HBV ayw replication and expression. Aim of the study was to investigate effects of shRNAs (small hairpin RNAs) targeting hepatitis B virus mRNAs on the viral replication in HepG2 2.2.15 cells. We selected three target HBV mRNA regions with different putative secondary structures to test whether the secondary structure of RNA may affect the inhibition efficacy on the target HBV RNA. Three HBV-specific siRNAs (small interfering RNA) were designed targeting X (1689-1708), Core (2229-2248) and S (765-784 nt) transcripts. HepG2 2.2.15 cells were transfected with shRNA expressing plasmids, P765, P2229 and P1689 targeting S, core and X region, respectively or a mock plasmid targeting lacZ gene. The culture media was collected throughout six days after transfection and analyzed by real-time PCR. Viral DNA production was suppressed for 7 days. The HBV DNA levels were decreased by 73, 72 and 79% with P765, P2229 and P1689 vectors, respectively. In conclusion, the shRNAs designed for X, core and S regions, specifically and significantly suppressed HBV DNA. siRNAs potentially may be used in treatment of hepatitis B.
    Archives of Virology 02/2007; 152(5):871-9. DOI:10.1007/s00705-006-0918-5 · 2.39 Impact Factor
Show more

Similar Publications