Coherent spontaneous activity identifies a hippocampal-parietal memory network.

Mallinckrodt Institute of Radiology, and Department of Neurology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 01/2007; 96(6):3517-31. DOI: 10.1152/jn.00048.2006
Source: PubMed

ABSTRACT Despite traditional theories emphasizing parietal contributions to spatial attention and sensory-motor integration, functional MRI (fMRI) experiments in normal subjects suggest that specific regions within parietal cortex may also participate in episodic memory. Here we examined correlations in spontaneous blood-oxygenation-level-dependent (BOLD) signal fluctuations in a resting state to identify the network associated with the hippocampal formation (HF) and determine whether parietal regions were elements of that network. In the absence of task, stimuli, or explicit mnemonic demands, robust correlations were observed between activity in the HF and several parietal regions (including precuneus, posterior cingulate, retrosplenial cortex, and bilateral inferior parietal lobule). These HF-correlated regions in parietal cortex were spatially distinct from those correlated with the motion-sensitive MT+ complex. Reanalysis of event-related fMRI studies of recognition memory showed that the regions spontaneously correlated with the HF (but not MT+) were also modulated during directed recollection. These regions showed greater activity to successfully recollected items as compared with other trial types. Together, these results associate specific regions of parietal cortex that are sensitive to successful recollection with the HF.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous neural activity within visual cortex is synchronized by both monosynaptic, hierarchical connections between visual areas and indirect, network-level activity. We examined the interplay of hierarchical and network connectivity in human visual cortex by measuring the organization of spontaneous neural signals within the visual cortex in total darkness using functional magnetic resonance imaging (fMRI). Twenty-five blind (14 congenital and 11 postnatal) participants with equally severe vision loss and 22 sighted subjects were studied. An anatomical template based on cortical surface topology was used for all subjects to identify the quarter-field components of visual areas V1-V3, and assign retinotopic organization. Cortical visual areas that represent the same quadrant of the visual field were considered to have a hierarchical relationship, while the spatially separated quarters of the same visual area were considered homotopic. Blindness was found to enhance correlations between hierarchical cortical areas as compared to indirect, homotopic areas at both the level of visual areas (p = 0.000031) and fine, retinotopic scale (p = 0.0024). A specific effect of congenital, but not postnatal, blindness was to further broaden the cortico-cortico connections between hierarchical visual areas (p = 0.0029). This finding is consistent with animal studies that observe a broadening of axonal terminal arborization when the visual cortex is deprived of early input. We therefore find separable roles for vision in developing and maintaining the intrinsic neural activity of visual cortex.
    Frontiers in Human Neuroscience 02/2015; 9:25. DOI:10.3389/fnhum.2015.00025 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Significant inter-individual differences in vigilance decline following sleep deprivation exist. We characterized functional connectivity in 68 healthy young adult participants in rested wakefulness and following a night of total sleep deprivation. After whole brain signal regression, functionally connected cortical networks during the well-rested state exhibited reduced correlation following sleep deprivation, suggesting that highly integrated brain regions become less integrated during sleep deprivation. In contrast, anti-correlations in the well-rested state became less so following sleep deprivation, suggesting that highly segregated networks become less segregated during sleep deprivation. Subjects more resilient to vigilance decline following sleep deprivation showed stronger anti-correlations among several networks. The weaker anti-correlations overlapped with connectivity alterations following sleep deprivation. Resilient individuals thus evidence clearer separation of highly segregated cortical networks in the well-rested state. In contrast to corticocortical connectivity, subcortical-cortical connectivity was comparable across resilient and vulnerable groups despite prominent state-related changes in both groups. Because sleep deprivation results in a significant elevation of whole brain signal amplitude, the aforesaid signal changes and group contrasts may be masked in analyses omitting their regression, suggesting possible value in regressing whole brain signal in certain experimental contexts. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroImage 02/2015; 111. DOI:10.1016/j.neuroimage.2015.02.018 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Goal-directed behavior is based on representations of contingencies between a certain situation (S), a certain (re)action (R) and a certain outcome (O). These S-R-O representations enable flexible response selection in different situations according to the currently pursued goal. Importantly however, the successful formation of such representations is a necessary but not sufficient precondition for goal-directed behavior which additionally requires the actual usage of the contingency information for action control. The present fMRI study aimed at identifying the neural basis of each of these two aspects: representing vs. explicitly using experienced S-R-O contingencies. To this end, we created three experimental conditions: S-R-O contingency present and used for outcome-based response selection, S-R-O contingency present but not used, and S-R-O contingency absent. The comparison between conditions with and without S-R-O contingency revealed that the angular gyrus is relevant for representing S-R-O contingencies. The explicit usage of learnt S-R-O representations in turn was associated with increased functional coupling between angular gyrus and several subcortical (hippocampus, caudate head), prefrontal (lateral orbitofrontal cortex, rostrolateral prefrontal cortex) and cerebellar areas, which we suggest represent different explicit and implicit processes of goal-directed action control. Hence, we ascribe a central role to the angular gyrus in associating actions to their sensory outcomes which is used to guide behavior through coupling of the angular gyrus with multiple areas related to different aspects of action control.
    Frontiers in Human Neuroscience 03/2015; 9. DOI:10.3389/fnhum.2015.00180 · 2.90 Impact Factor

Full-text (3 Sources)

Available from
May 26, 2014