The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas.

Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.
Clinical Cancer Research (Impact Factor: 7.84). 08/2006; 12(15):4730-7. DOI: 10.1158/1078-0432.CCR-06-0593
Source: PubMed

ABSTRACT High-grade glioma treatment includes ionizing radiation therapy. The high invasiveness of glioma cells precludes their eradication and is responsible for the dismal prognosis. Recently, we reported the down-regulation of MHC class I (MHC-I) products in invading tumor cells in human and mouse GL261 gliomas. Here, we tested the hypothesis that whole-brain radiotherapy (WBRT) up-regulates MHC-I expression on GL261 tumors and enhances the effectiveness of immunotherapy.
MHC-I molecule expression on GL261 cells was analyzed in vitro and in vivo by flow cytometry and immunohistochemistry, respectively. To test the response of established GL261 gliomas to treatment, mice with measurable (at CT imaging) brain tumors were randomly assigned to four groups receiving (a) no treatment, (b) WBRT in two fractions of 4 Gy, (c) vaccination with irradiated GL261 cells secreting granulocyte-macrophage colony-stimulating factor, or (d) WBRT and vaccination. Endpoints were tumor response and survival.
An ionizing radiation dose of 4 Gy maximally up-regulated MHC-I molecules on GL261 cells in vitro. In vivo, WBRT induced the expression of the beta2-microglobulin light chain subunit of the MHC class I complex on glioma cells invading normal brain and increased CD4+ and CD8+ T cell infiltration. However, the survival advantage obtained with WBRT or vaccination alone was minimal. In contrast, WBRT in combination with vaccination increased long-term survival to 40% to 80%, compared with 0% to 10% in the other groups (P < 0.002). Surviving animals showed antitumor immunity by rejecting challenge tumors.
Ionizing radiation can be successfully combined with peripheral vaccination for the treatment of established high-grade gliomas.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.
    International Journal of Molecular Sciences 01/2014; 15(1):927-43. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The main role of the immune system is to restore tissue homeostasis when altered by pathogenic processes, including neoplastic transformation. Immune-mediated tumor rejection has been recognized as an extrinsic tumor suppressor mechanism that tumors need to overcome to progress. By the time a tumor becomes clinically apparent it has successfully escaped immune control by establishing an immunosuppressive microenvironment. Ionizing radiation applied locally to a tumor alters these tumor-host interactions. Accumulating evidence indicates that standard therapeutic doses of radiation have the potential to recover tumor immunogenicity and convert the tumor into an in situ personalized vaccine. Radiotherapy induces an immunogenic tumor cell death promoting cross-presentation of tumor-derived antigens by dendritic cells to T cells. In addition, radiotherapy stimulates chemokine-mediated recruitment of effector T cells to the tumor, and cellular recognition and killing by T cells that is facilitated by upregulation of major histocompatibility antigens, NKG2D ligands, adhesion molecules and death receptors. Despite these effects, radiotherapy alone is only rarely capable of generating enough proinflammatory signals to sufficiently overcome suppression, as it can also activate immunosuppressive factors. However, our group and others have shown that when combined with targeted immunotherapy agents radiotherapy significantly contributes to a therapeutically effective anti-tumor immune response. To illustrate this partnership between radiation and immunotherapy we will discuss as an example our experience in preclinical models and the molecular mechanisms identified. Additionally, the clinical translation of these combinations will be discussed.
    Radiation research. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: T cell activation is regulated by the interactions of surface receptors with stimulatory and inhibitory ligands. Programmed death-1 homolog (PD-1H, also called VISTA) is a member of the CD28 family of proteins and has been shown to act as a coinhibitory ligand on APCs that suppress T cell responses. Here, we determined that PD-1H functions as a coinhibitory receptor for CD4+ T cells. CD4+ T cells in mice lacking PD-1H exhibited a dramatically increased response to antigen stimulation. Furthermore, delivery of a PD-1H-specific agonist mAb directly inhibited CD4+ T cell activation both in vitro and in vivo, validating a coinhibitory function of PD-1H. In a murine model of acute hepatitis, administration of a PD-1H agonist mAb suppressed CD4+ T cell-mediated acute inflammation. PD-1H-deficient animals were highly resistant to tumor induction in a murine brain glioma model, and depletion of CD4+ T cells, but not CD8+ T cells, promoted tumor formation. Together, our findings suggest that PD-1H has potential as a target of immune modulation in the treatment of human inflammation and malignancies.
    The Journal of clinical investigation 04/2014; · 15.39 Impact Factor

Full-text (2 Sources)

1 Download
Available from
Jul 4, 2014