The Combination of Ionizing Radiation and Peripheral Vaccination Produces Long-term Survival of Mice Bearing Established Invasive GL261 Gliomas

Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.
Clinical Cancer Research (Impact Factor: 8.72). 08/2006; 12(15):4730-7. DOI: 10.1158/1078-0432.CCR-06-0593
Source: PubMed


High-grade glioma treatment includes ionizing radiation therapy. The high invasiveness of glioma cells precludes their eradication and is responsible for the dismal prognosis. Recently, we reported the down-regulation of MHC class I (MHC-I) products in invading tumor cells in human and mouse GL261 gliomas. Here, we tested the hypothesis that whole-brain radiotherapy (WBRT) up-regulates MHC-I expression on GL261 tumors and enhances the effectiveness of immunotherapy.
MHC-I molecule expression on GL261 cells was analyzed in vitro and in vivo by flow cytometry and immunohistochemistry, respectively. To test the response of established GL261 gliomas to treatment, mice with measurable (at CT imaging) brain tumors were randomly assigned to four groups receiving (a) no treatment, (b) WBRT in two fractions of 4 Gy, (c) vaccination with irradiated GL261 cells secreting granulocyte-macrophage colony-stimulating factor, or (d) WBRT and vaccination. Endpoints were tumor response and survival.
An ionizing radiation dose of 4 Gy maximally up-regulated MHC-I molecules on GL261 cells in vitro. In vivo, WBRT induced the expression of the beta2-microglobulin light chain subunit of the MHC class I complex on glioma cells invading normal brain and increased CD4+ and CD8+ T cell infiltration. However, the survival advantage obtained with WBRT or vaccination alone was minimal. In contrast, WBRT in combination with vaccination increased long-term survival to 40% to 80%, compared with 0% to 10% in the other groups (P < 0.002). Surviving animals showed antitumor immunity by rejecting challenge tumors.
Ionizing radiation can be successfully combined with peripheral vaccination for the treatment of established high-grade gliomas.

Download full-text


Available from: Sandra Demaria, Jun 20, 2014
17 Reads
  • Source
    • "Few reports have examined radiation-induced changes in HLA class I expression at different clinical phases; however, it has been demonstrated in vitro [12], [14], [15], [21]. Speetjens et al., found also no significant differences in HLA class I expression in tumor samples from patients treated with or without irradiation [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Enhancing immunologic responses, including human leukocyte antigen (HLA) class I expression on tumor cells and recognition and elimination of tumor cells by tumor-specific cytotoxic T lymphocyte (CTL), is considered a novel concept of radiotherapy. The present study examined patients who underwent preoperative hyperthermo-chemoradiotherapy (HCRT) for locally advanced rectal cancer to assess the correlation between HLA class I expression and clinical outcome. Materials and Methods Seventy-eight patients with locally advanced rectal adenocarcinoma who received preoperative HCRT were enrolled. The median age of the patients was 64 years (range, 33–85 years) and 4, 18, and 56 patients had clinical stage I, II and III disease, respectively. Formalin-fixed and paraffin-embedded tissues excised before and after HCRT were subjected to immunohistochemical analysis with an anti-HLA class I-A, B, C antibody. HLA class I expression was graded according to tumor cell positivity. Results In pre-HCRT, the number of specimens categorized as Grade 0 and 1 were 19 (24%) and 58 (74%), respectively. Only 1 patient (1%) showed Grade 2 expression. However, 6 (8%), 27 (35%), 7 (9%), and 12 (15%) post-HCRT specimens were graded as Grade 0, 1, 2, and 3, respectively. There was a significant increase in HLA class I expression in post-HCRT specimens (p<0.01). However, neither pre- nor post-HCRT HLA class I expression affected overall survival and distant metastasis-free survival in clinical stage III patients. Univariate analysis revealed that Post-HCRT HLA class I expression showed a significant negative relationship with LC (p<0.05). Nevertheless, multivariate analysis showed that there was no correlation between HLA class I expression and clinical outcome. Conclusion HCRT increased HLA class I expression in rectal cancer patients. However, multivariate analysis failed to show any correlation between the level of HLA class I expression and prognosis.
    PLoS ONE 09/2014; 9(9):e108122. DOI:10.1371/journal.pone.0108122 · 3.23 Impact Factor
  • Source
    • "Several studies have shown that ionizing radiation induces or upregulates cell surface molecules involved in recognition and/or killing of tumor cells by cytolytic T cells (CTL). These include major histocompatibility class I molecules (MHC-I), Fas/CD95, intercellular adhesion molecules-1 (ICAM-1), and NKG2D ligands (Hareyama et al., 1991; Gaugler et al., 1997; Chakraborty et al., 2003, 2004; Garnett et al., 2004; Gasser et al., 2005; Kim et al., 2006; Newcomb et al., 2006; Reits et al., 2006). In most studies, escalating doses of radiation, delivered in a single fraction, were tested on one or a few cell lines of mouse or human origin. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionizing radiation to a cancer site has the ability to convert the irradiated tumor in an immunogenic hub. However, radiation is a complex modifier of the tumor microenvironment and, by itself, is seldom sufficient to induce a therapeutically significant anti-tumor immune response, since it can also activate immune suppressive pathways. While several combinations of local radiation and immunotherapy have been shown in pre-clinical models to induce powerful anti-tumor immunity, the optimal strategy to achieve this effect remains to be defined. When used in vivo, radiation effects on tumors depend on the dose per fraction applied, the number of fractions used, and the total dose. Moreover, the interplay of these three variables is contingent upon the tumor setting studied, both in pre-clinical and clinical applications. To enable repair of the collateral damage to the normal tissue, radiation is usually given in multiple fractions, usually of 2 Gy. Generally, the use of larger fractions is limited to stereotactic applications, whereby optimal immobilization reduces inter- and intrafraction movement and permits a very conformal delivery of dose to the target, with optimal exclusion of normal tissue. Translation of the partnership of radiation and immunotherapy to the clinic requires a careful consideration of the radiation regimens used. To date, little is known on whether different dose/fractionation regimens have a specific impact on the anti-tumor immune response. Most experiments combining the two modalities were conducted with single fractions of radiotherapy. However, there is at least some evidencethat when combined with some specific immunotherapy approaches, the ability of radiation to promote anti-tumor immunity is dependent on the dose and fractionation employed. We critically review the available in vitro and in vivo data on this subject and discuss the potential impact of fractionation on the ability of radiation to synergize with immunotherapy.
    Frontiers in Oncology 10/2012; 2:153. DOI:10.3389/fonc.2012.00153
  • Source
    • "Newcomb et al demonstrated that the peripheral vaccination of mice with modified autologous tumor cells secreting granulocyte–macrophage colony-stimulating factor combined with ionizing radiation to the whole brain could cure well-established brain tumors in roughly half of their experimental animals.6 In a subsequent study, ionizing radiation in combination with anti-CD137 immunotherapy was used to elicit an effective immune response against glioma within a murine model.29 "
    [Show abstract] [Hide abstract]
    ABSTRACT: A peptide mimetic of a ligand for the galactose/N-acetylgalactosamine-specific C-type lectin receptors (GCLR) exhibited monocyte-stimulating activity, but did not extend survival when applied alone against a syngeneic murine malignant glioma. In this study, the combined effect of GCLRP with radiation was investigated. C57BL/6 mice underwent stereotactic intracranial implantation of GL261 glioma cells. Animals were grouped based on randomized tumor size by magnetic resonance imaging on day seven. One group that received cranial radiation (4 Gy on days seven and nine) only were compared with animals treated with radiation and GCLRP (4 Gy on days seven and nine combined with subcutaneous injection of 1 nmol/g on alternative days beginning on day seven). Magnetic resonance imaging was used to assess tumor growth and correlated with survival rate. Blood and brain tissues were analyzed with regard to tumor and contralateral hemisphere using fluorescence-activated cell sorting analysis, histology, and enzyme-linked immunosorbent assay. GCLRP activated peripheral monocytes and was associated with increased blood precursors of dendritic cells. Mean survival increased (P < 0.001) and tumor size was smaller (P < 0.02) in the GCLRP + radiation group compared to the radiation-only group. Accumulation of dendritic cells in both the tumoral hemisphere (P < 0.005) and contralateral tumor-free hemisphere (P < 0.01) was associated with treatment. Specific populations of monocyte-derived brain cells develop critical relationships with malignant gliomas. The biological effect of GCLRP in combination with radiation may be more successful because of the damage incurred by tumor cells by radiation and the enhanced or preserved presentation of tumor cell antigens by GCLRP-activated immune cells. Monocyte-derived brain cells may be important targets for creating effective immunological modalities such as employing the receptor system described in this study.
    Cancer Management and Research 09/2012; 4(1):325-34. DOI:10.2147/CMAR.S33355
Show more